Supplementary Information

Mapping the end-of-life of chemicals for circular economy opportunities

Taylor Uekert^{a,*}

^a Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, Colorado, 80401, United States

* taylor.uekert@nrel.gov

This PDF contains: Figures S1-S6, Tables S1-S9, Supplementary References

Figure S1. Sankey diagram representing the flow of chemicals in the U.S. in million metric tons from production through to intermediates, final products, and disposal. "Other inputs" include feedstocks beyond those listed in the study, such as oxygen, water, hydrogen, or carbon monoxide. "Side products" include by-products that are generated due to chemical reaction stoichiometry, such as carbon dioxide or water. For visual clarity, emissions to water (0.1 Mt) are combined with wastewater treatment (12.4 Mt). Abbreviations: HCI – hydrochloric acid; HDPE – high density polyethylene; LDPE – low density polyethylene; PP – polypropylene; PVC – polyvinyl chloride; PET – polyethylene terephthalate; AI – aluminum.

Figure S2. Sankey diagram highlighting the flow of olefins (ethylene, propylene, butylenes, and butadiene) in the U.S. in million metric tons from production through to intermediates, final products, and disposal. Bolded text indicates the relevant end-products and disposal types for olefins. "Other inputs" include feedstocks beyond those listed in the study, such as oxygen, water, hydrogen, or carbon monoxide. "Side products" include by-products that are generated due to chemical reaction stoichiometry, such as carbon dioxide or water. Abbreviations: HCI – hydrochloric acid; HDPE – high density polyethylene; LDPE – low density polyethylene; PP – polypropylene; PVC – polyvinyl chloride; PET – polyethylene terephthalate; AI – aluminum.

Figure S3. Sankey diagram highlighting the flow of aromatics (benzene, toluene, and xylenes) in the U.S. in million metric tons from production through to intermediates, final products, and disposal. Bolded text indicates the relevant end-products and disposal types for aromatics. "Other inputs" include feedstocks beyond those listed in the study, such as oxygen, water, hydrogen, or carbon monoxide. "Side products" include by-products that are generated due to chemical reaction stoichiometry, such as carbon dioxide or water. Abbreviations: HCI – hydrochloric acid; HDPE – high density polyethylene; LDPE – low density polyethylene; PP – polypropylene; PVC – polyvinyl chloride; PET – polyethylene terephthalate; AI – aluminum.

Figure S4. Sankey diagram highlighting the flow of alcohols (ethanol and methanol) in the U.S. in million metric tons from production through to intermediates, final products, and disposal. Bolded text indicates the relevant end-products and disposal types for alcohols. "Other inputs" include feedstocks beyond those listed in the study, such as oxygen, water, hydrogen, or carbon monoxide. "Side products" include by-products that are generated due to chemical reaction stoichiometry, such as carbon dioxide or water. Abbreviations: HCI – hydrochloric acid; HDPE – high density polyethylene; LDPE – low density polyethylene; PP – polypropylene; PVC – polyvinyl chloride; PET – polyethylene terephthalate; AI – aluminum.

Figure S5. Sankey diagram highlighting the flow of sulfuric acid and ammonia in the U.S. in million metric tons from production through to intermediates, final products, and disposal. Bolded text indicates the relevant end-products and disposal types for sulfuric acid or ammonia. "Other inputs" include feedstocks beyond those listed in the study, such as oxygen, water, hydrogen, or carbon monoxide. "Side products" include by-products that are generated due to chemical reaction stoichiometry, such as carbon dioxide or water. Abbreviations: HCI – hydrochloric acid; HDPE – high density polyethylene; LDPE – low density polyethylene; PP – polypropylene; PVC – polyvinyl chloride; PET – polyethylene terephthalate; AI – aluminum.

Figure S6. Sankey diagram highlighting the flow of chlor-alkali (sodium hydroxide and chlorine) and sodium carbonate in the U.S. in million metric tons from production through to intermediates, final products, and disposal. Bolded text indicates the relevant end-products and disposal types for chlor-alkali or sodium carbonate. "Other inputs" include feedstocks beyond those listed in the study, such as oxygen, water, hydrogen, or carbon monoxide. "Side products" include by-products that are generated due to chemical reaction stoichiometry, such as carbon dioxide or water. Abbreviations: HCI – hydrochloric acid; HDPE – high density polyethylene; LDPE – low density polyethylene; PP – polypropylene; PVC – polyvinyl chloride; PET – polyethylene terephthalate; AI – aluminum.

Table S1. Overview of the data sources and assumptions used to estimate the production and consumption of chemicals,

Entry	Product- ion data?	Consum- ption data?	Ref.	Notes
Ethylene	Y	Y	1–3	
High density polyethylene	Y	Y	1,4–6	
Linear low density polyethylene	Y	Y	1,4,6	
Low density polyethylene	Y	Y	1,4,6	
Ethylene oxide	Y	Υ	1,2	
Ethylene dichloride	Y	Y	1,2	
Ethylbenzene	Ν	Ν	N/A	Estimated based on ethylene consumption for this end-use and chemical reaction with 100% yield: $C_2H_4 + C_6H_6 \rightarrow C_8H_{10}$. Production and consumption were assumed to be equal.
Vinyl acetate	Y	Y	1	
Acetaldehyde	N	Y	1,2	Production and consumption were assumed to be equal.
Ethylene glycol	Y	Y	1,2	
Ethoxylates	Y	Y	1	
Ethanolamines	Y	Y	1	
E-series glycol ethers	Y	Y	1	
Polyethylene glycol	Y	Y	1	
Polyether polyols	Y	Y	1,4	
Vinyl chloride	Y	Y	1,2	
Trichloroethylene	Ν	N	N/A	Back-calculated based on HFC-125 and HFC-134a requirements using chemical reactions and 100% yield: $C_2HCI_3 + 5HF \rightarrow C_2HF_5 + 3HCI + H_2$ and $C_2HCI_3 + 4HF \rightarrow C_2H_2F_4 + 3HCI$. Production and consumption were assumed to be equal.
Styrene	Y	Υ	1,2,7	
Polyvinyl acetate	Ν	Y	1,4	Production and consumption were assumed to be equal.
Polyvinyl alcohol	Ν	Y	1	Production and consumption were assumed to be equal.
Ethylene vinyl acetate	Ν	Y	1,4	Production and consumption were assumed to be equal.
Ethylene vinyl alcohol	N	Y	1	
Polyethylene terephthalate	Y	Υ	1,4–6	
Antifreeze	Ν	Ν	N/A	Estimated based on ethylene glycol consumption for this end-use. Production and consumption were assumed to be equal.
Polyurethanes	Y	Y	1,4,6,8	
Cleaning agents	N	Ν	N/A	Estimated based on the consumption of individual chemicals (ethoxylates, acrylic acid, sodium hydroxide, sodium carbonate, ethanolamine, 2- ethylhexanol, polyethylene glycol, E-series glycol ethers, P-series glycol ethers, ethyleneamines, alkylbenzene, methylamine, methyl chloride, silicones, sulfuric acid, sodium silicate, sodium bicarbonate, sodium hypochlorite, calcium hypochlorite) for this end-use. Production and consumption were assumed to be equal.
Herbicides	N	Ν	N/A	Estimated based on the consumption of individual chemicals (ethanolamine, butylamines, methyl chloride) for this end-use. Production and consumption were assumed to be equal.
Gas treatment	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (ethanolamine, sodium bicarbonate, ethylene glycol, polyethylene glycol, sodium thiosulfate, sodium sulfite) for this end-use. Production and consumption were assumed to be equal.
Cement treatment	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (ethanolamine, ethyleneamines, polycarboxylate ethers) for this end-use. Production and consumption were assumed to be equal.
Metals and mining	N	N	N/A	Estimated based on the consumption of individual chemicals (ethanolamine, 2-ethylhexanol, polyacrylamide, sulfuric acid, acrylic acid, sodium hydrosulfide, sodium sulfide, hydrofluoric acid, nitric acid, sodium cyanide) for this end-use. Production and consumption were assumed to be equal.
Ethyleneamines	Y	Y	1	
Brake fluid & lubricants	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (E-series glycol ethers, polyethylene glycol, 2-ethylhexanol, ethyleneamines, silicones, pentaerythritol, methyl isobutyl ketone) for this end-use. Production and consumption were assumed to be equal.
Health care	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (polyethylene glycol, isopropanol, propylene glycol, methylamine, methylene chloride, acetic anhydride, silicones, methyl cellulose, ethanol,

intermediates, and end-products in this study (continues to page S12). Y = yes; N = no; N/A = not available.

Entry	Product- ion data?	Consum- ption data?	Ref.	Notes
				sodium bicarbonate) for this end-use. Production and consumption were
Personal care	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (polyethylene glycol, isopropanol, propylene glycol, methylamine, methylene chloride, acetic anhydride, silicones, methyl cellulose, ethanol, sodium bicarbonate) for this end-use. Production and consumption were assumed to be equal.
Polycarboxylate ethers	Ν	Ν	N/A	
Polyvinyl chloride	Y	Y	1,4,5	
HFC-125	Y	Y	1,9	
HFC-134a	Y	Y	1,9	
Polystyrene	Y	Y	1,4,5	
Acrylonitrile butadiene styrene /	Y	Y	1,4	
styrene-acrylonitrile resin				
Styrene-butadiene rubber	Y	Y	1,4	
Paints & surface coatings	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (polyvinyl acetate, acrylate esters, isophthalic acid, melamine, ethyleneamines, titanium dioxide, carbon black, E-series glycol ethers, P-series glycol ethers, methyl methacrylate, benzoic acid, phthalic anhydride, methylene chloride, silicones, pentaerythritol, silicas, sodium bicarbonate, epichlorohydrin, n-methyl-2-pyrrolidone, methyl isobutyl ketone, n-butyl acetate) for this end-use. Production and consumption were assumed to be equal.
Adhesives & sealants	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (polyvinyl acetate, polyvinyl alcohol, acrylate esters, polyvinyl butyrate, bisphenol A, methylene chloride, silicones, pentaerythritol, methyl cellulose, melamine, epichlorohydrin) for this end-use. Production and consumption were assumed to be equal.
Paper coatings & additives	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (polyvinyl acetate, acrylate esters, polyacrylamide, titanium dioxide, carbon black, styrene-butadiene latex, silicones, ethanol, polyvinyl alcohol) for this enduse. Production and consumption were assumed to be equal.
Polyvinyl butyral	Y	Y	1	
Plastic additives	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (polyvinyl alcohol, acrylate esters, titanium dioxide, carbon black, 2-ethylhexanol, acrylic acid, benzoic acid, butanol, butylamines) for this end-use. Production and consumption were assumed to be equal.
Propylene	Y	Y	1,2,10	
Polypropylene	Y	Y	1,4,5	
Propylene oxide	Y	Y	1	
Acrylonitrile	Y	Y	1,2	
Cumene	Y	Y	1,11	
Acrylic acid	Y	Y	1,12	
	Y	Y	1,2	
Butanal	ř	ř	1,2	
Enichlorobydrin	T V	Y	1,2	
Propylene glycol	Y	V	1.13	
Butanediol	Y	Y	1.2	
P-series alvcol ethers	V	V	1	
Acrylamide	Y	Y	1 14	
Adiponitrile	Y	Y	1	
Nitrile rubber	Y	Y	1	
Carbon fiber	Y	Y	1 15	
Phenol	Y	Y	1.2	
Acetone	Y	Y	12	
Acrylate esters	Y	Y	1	
Superabsorbent polymers	Y	Y	1.16	
Solvents	N	N	N/A	Estimated based on the consumption of individual chemicals (2- ethylhexanol, isopropanol, butanol, tetrahydrofuran, ethanol, methanol, acetone, n-methyl-2-pyrrolidone, methyl isobutyl ketone, toluene) for this end-use. Production and consumption were assumed to be equal.
Methyl isobutyl ketone	Y	Y	1,2	
n-butyl acetate	Y	Y	1,17	
Butylamines	Y	Y	1	

Entry	Product- ion data?	Consum- ption data?	Ref.	Notes
Tetrahydrofuran	Y	Y	12	
Gamma-butyrolactone	N	N	N/A	Estimated from known butanediol consumption using chemical reaction with 100% yield: $C_4H_{10}O_2 \rightarrow C_4H_6O_2 + 2H_2$ and 100%. Production and consumption were assumed to be equal.
Polybutylene terephthalate	Y	Y	1,4	
Polyacrylamide	Y	Y	1	
Hexamethylene diamine	Y	Y	1,2	
Bisphenol A	Y	Y	1.2.18	
Methyl methacrylate	Ý	Y	1	
Pesticides	N	N	N/A	Estimated based on the consumption of individual chemicals (butylamines, methylamine) for this end-use.
N-methyl-2-pyrrolidone	Ν	Ν	N/A	Estimated from known gamma-butyrolactone consumption using chemical reaction with 100% yield: $C_4H_6O_2 + CH_5N \rightarrow C_5H_9NO + H_2O$ and 100% yield.
Polycarbonate	Y	Y	1,4,19	·
Polymethyl methacrylate	Y	Y	1,4	
Butylenes	Y	Y	1,20	
Gasoline	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (butylenes, toluene, methyl tert butyl ether, ethyleneamines, polyacrylamide, ethanol, xylenes) for this end-use. Production and consumption were assumed to be equal.
Methyl tert-butyl ether	Y	Y	1,2,21	
Ethyl tert-butyl ether	Y	Y	1,22	
Butyl rubber and polyisobutylene	Y	Y	1,4	
Butadiene	Y	Y	1,2,20	
Polybutadiene	Y	Y	1,4	
Benzene	Y	Y	1,2,23	
Nitrobenzene	Y	Y	1,2	
Cyclohexanol / cyclohexanone	Ν	Ν	N/A	Estimated from known benzene consumption and chemical reaction: $2C_6H_6 + 5H_2 + O_2 \rightarrow C_6H_{12}O + C_6H_{10}O$. Production and consumption were assumed to be equal.
Alkylbenzene	Y	Y	1	
Aniline	Y	Y	1,2	
Adipic acid	Y	Y	1,2	
Caprolactam	Y	Y	1,2	
Methylene diphenyl diisocyanate	Y	Y	1,2,24	
Nylon 6 / 66	Y	Y	1,4	
Toluene	Y	Y	1,2	
Toluene diisocyanate	Y	Y	1,2,25	
Benzoic acid	Y	Y	1,26	
Sodium / potassium benzoate	N	Ν	N/A	Estimated from known toluene consumption and chemical reaction with 100% yield: $C_7H_6O_2$ + NaOH $\rightarrow C_7H_5NaO_2$ + H ₂ O. Production and consumption were assumed to be equal.
Xylenes	Y	Y	1,2	
Isophthalic acid	Y	Y	1,2	
Terephthalic acid	Y	Y	1,2	
Dimethyl terephthalate	Y	Y	1	
Phthalic anhydride	Y	Y	1,2	
Methanol	Y	Y	1,2,27	
Formaldehyde	Y	Y	1,2,28	
Acetic acid	Y	Y	1,2	
Biodiesel	Ν	Ν	N/A	Estimated based on the consumption of methanol for this end-use. Production and consumption were assumed to be equal.
Methylamines	Ν	Ν	N/A	Estimated based on the consumption of methanol for this end-use. Production and consumption were assumed to be equal.
Methyl chloride	Y	Y	1,2,20	
Polyacetal resins	Y	Y	1,4	
Pentaerythritol	Y	Y	1,20	
Acetic anhydride	Y	Y	1,2	
Methylene chloride	Y	Y	1,29	
Methyl chlorosilanes	N	N	N/A	Estimated based on the consumption of methyl chloride for this end-use. Production and consumption were assumed to be equal.
Methyl cellulose	Y	Υ	1	
Cellulose acetates	Y	Y	1,30	

Entry	Product- ion data?	Consum- ption data?	Ref.	Notes
Cigarettes	Ν	N	N/A	Estimated assuming that 100% of cellulose acetates are consumed for this end-use. Production and consumption were assumed to be equal
Chloroform	Y	Y	12	
HFC-32	Y	Y	1.9	
Silicones	Y	Ŷ	1	
Carbon tetrachloride	Y	Y	1.31	
HCEC-22	Y	Y	1	
Refrigerants and air conditioning	N	N	N/A	Estimated based on the consumption of individual chemicals (HEC-32
	i v	N.	N/A	HCFC-22, HFC-125, HFC-134a, carbon tetrachloride, and hydrofluoric acid) for this end-use. Production and consumption were assumed to be equal.
Fluoropolymers	Ν	Ν	N/A	Estimated based on the consumption of HCFC-22 for this end-use. Production and consumption were assumed to be equal.
Silicone rubbers and elastomers	Ν	Ν	N/A	Estimated based on the consumption of silicones for this end-use. Production and consumption were assumed to be equal.
Ethanol	Y	Y	1,32	
Food	Ν	Ν	33	Estimated based on the consumption of individual chemicals (ethanol, silicas, sodium bicarbonate, fertilizers, sodium/potassium benzoate) for this end-use; food mass itself is not included. 19% of total fertilizer was assumed to be used for food based on the distribution of U.S. crop growth by end-use (data in ref. at left). Production and consumption were assumed to be equal.
Ammonia	Y	Y	1,34,35	
Ammonia fertilizer	Υ	Y	1,35	
Urea	Y	Y	1,35	
Nitric acid	Y	Y	1,35	
Ammonium phosphate fertilizers	Y	Y	1,35	
Complex NPK fertilizers	Y	Y	1,35	
Ammonium sulfate fertilizers	Y	Y	1.35	
Hydrogen cyanide	Y	Y	1,36	
Lirea-based fertilizers	V	V	35	
Fertilizers	N	N	N/A	Estimated based on the consumption of individual chemicals (ammonia fertilizers, ammonium phosphate fertilizers, complex NPK fertilizers, ammonium sulfate fertilizers, ammonium nitrate fertilizers, urea based fertilizers) for this end-use; losses from plant growth (70% nitrogen use efficiency) are accounted for. Production and consumption were assumed to be equal.
Animal feeds	Ν	Ν	33	Estimated based on the consumption of individual chemicals (urea, phosphoric acid, sodium bicarbonate, methylamine, acetaldehyde, silicas, fertilizers) for this end-use; biomass weight itself is not included. 26% of total fertilizer was assumed to be used for animal feed production based on the distribution of U.S. crop growth by end-use (data in ref. at left). Production and consumption were assumed to be equal.
Other crops	N	Ν	33	Estimated based on the consumption of fertilizers for this end-use; crop mass itself is not included. 55% of total fertilizer was assumed to be used for other crops based on the distribution of U.S. crop growth by end-use (data in ref. at left). Production and consumption were assumed to be equal.
Melamine	Y	Y	1	
Ammonium nitrate	Y	Y	1,35,37	
Sodium cyanide	Y	Y	1	
Wood laminates	Ν	N	N/A	Estimated based on the consumption of individual chemicals (melamine, formaldehyde, urea, butanol, phenol, ethanolamine) for this end-use; wood mass itself is not included. Production and consumption were assumed to be equal.
Ammonium nitrate fertilizers	Y	Y	1,35,37	
Ammonium nitrate explosives	Y	Y	1	
Chlorine	Y	Y	1,38	
Phosgene	Y	Y	1,2,39	
Aluminum chloride	Y	Y	1	
Sodium hypochlorite	Y	Y	1 40	
Calcium hypochlorite	Y	Y	1 41	
Titanium dioxide	Y	V	1.42	
Pulp and paper treatment	N	N	N/A	Estimated based on the consumption of individual chemicals (chlorine

Estimated based on the consumption of individual chemicals (chlorine, sodium hydroxide, polyvinyl acetate, methylamine, aluminum chloride,

Entry	Product- ion data?	Consum- ption data?	Ref.	Notes
				sulfuric acid, aluminum sulfate, sodium aluminate, sodium hydrosulfide, sodium hydrosulfite, sodium sulfide, sodium sulfite, sodium silicate, silicas) for this end-use. Production and consumption were assumed to be equal.
Water treatment	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (chlorine, sodium hydroxide, acrylic acid, polyacrylamide, methylamine, aluminum chloride, sodium hypochlorite, aluminum sulfate, sodium aluminate, sodium sulfite, sodium thiosulfate, sodium bicarbonate) for this end-use. Production and consumption were assumed to be equal.
Catalysts	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (aluminum chloride, sodium aluminate, sodium silicate, silicas) for end-use. Production and consumption were assumed to be equal.
Sodium hydroxide	Y	Y	1,43,44	
Aluminum oxide	Y	Y	45	
Sodium hydrosulfide	Y	Y	1	
Sodium hydrosulfite	Y	Y	1	
Sodium sulfide	Y	Y	1	
Sodium sulfite	Y	Y	1	
Sodium thiosulfate	Y	Y	1	
Textiles processing	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (sodium hydroxide, sodium hydrosulfite) for this end-use. Production and consumption were assumed to be equal.
Aluminum metal	Y	Y	46	
Aluminum sulfate	Y	Y	1,47	
Sodium aluminate	Y	Υ	1	
Sulfuric acid	Y	Y	1,48,49	
Phosphoric acid	Y	Y	1,50	
Hydrofluoric acid	Y	Y	1	
Lead acid batteries	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (sulfuric acid, silicas) for this end-use; other non-chemical components were not included. Production and consumption were assumed to be equal.
Sodium carbonate	Y	Y	1,51,52	
Glass, flat	Y	Y	53–55	
Glass, container	Y	Y	53–55	
Glass, other	Y	Y	53–55	
Sodium silicate	Y	Y	1,56	
Sodium bicarbonate	Y	Y	1	
Silicas	Y	Υ	1,57	
Adsorbents	Ν	Ν	N/A	Estimated based on the consumption of individual chemicals (sodium silicate, silicas) for this end-use. Production and consumption were assumed to be equal.

 Table S2. End-of-life assumptions for the end-products included in this study (continues to page S15). N/A = not available.

End-product	Dispose (%)	Longer life (%)	Land -fill	Recycle or reuse	Energy recover	Incin- erate	Emit to air	Emit to land	Emit to water	Waste- water	Other (%)	Notes	Ref.
			(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)			
ABS & other resins	87	13	70	22	8	0	0	0	0	0	0	Data from 2019.	6
Adhesives & sealants	6	94	100	0	0	0	0	0	0	0	0	Assume products go to electronics (5-year lifetime), construction (50-year), and consumer products (1-year), for average of 17 years. All disposed is landfilled.	N/A
Adsorbents	100	0	100	0	0	0	0	0	0	0	0	Assume all are landfilled.	N/A
Aluminum metal	86.5	13.5	68	17	14	0	0	0	0	0	1	Data from 2018.	58
Animal feed	75	25	0	50	0	0	0	50	0	0	0	Using nitrogen use efficiency of livestock, assume 75% of incoming feed is released as manure. Half is reused as fertilizer while the other half is disposed.	59
Antifreeze	100	0	88	12	0	0	0	0	0	0	0	Data from 1999.	60
Biodiesel	100	0	0	0	100	0	0	0	0	0	0	Assume biodiesel is burned for energy.	N/A
Brake fluid & lubricants	100	0	0	40	46	0	0	0	14	0	0	Data from 2006.	61
Carbon fiber	30	70	98	0	0	2	0	0	0	0	0	30% loss during manufacturing. Assume 50-year lifetime in durable goods.	62,63
Catalysts	50	50	70	30	0	0	0	0	0	0	0	Assume 2-year lifetime. Data from 1996.	64
Cement & concrete	100	0	0	0	0	0	0	0	0	100	0	Assume all chemicals used for grinding end up in wastewater treatment.	N/A
Cigarettes	100	0	25	0	0	0	0	75	0	0	0	Data from 2009.	65
Cleaning agents	100	0	0	0	0	0	0	0	2.4	97.6	0	Assume all end up in water. 84% sent to wastewater treatment and 16% to septic tanks (U.S. average); ~15% of septic tanks fail, so 2.4% go to groundwater.	66,67
Explosives	100	0	0	0	0	0	100	0	0	0	0	Assume all explosives are detonated and released to the environment.	N/A
Fertilizer, ammonia	30	70	0	0	0	0	29	71	0	0	0	Longer lifetime is based on the nitrogen use efficiency of the U.S. (first ref. at right). Air emissions are based on volatization rates reported in second ref. at right, with remainder assumed to be emitted to land.	68,69
Fertilizer, ammonium nitrate	30	70	0	0	0	0	3	97	0	0	0	Longer lifetime is based on the nitrogen use efficiency of the U.S. (first ref. at right). Air emissions are based on volatization rates reported in second ref. at right, with remainder assumed to be emitted to land.	68,69
Fertilizer, ammonium phosphate	30	70	0	0	0	0	3	97	0	0	0	Longer lifetime is based on the nitrogen use efficiency of the U.S. (first ref. at right). Air emissions are based on volatization rates reported in second ref. at right, with remainder assumed to be emitted to land.	68,69
Fertilizer, ammonium sulfate	30	70	0	0	0	0	2	98	0	0	0	Longer lifetime is based on the nitrogen use efficiency of the U.S. (first ref. at right). Air emissions are based on volatization	68,69

End-product	Dispose	Longer	Land	Recycle	Energy	Incin-	Emit	Emit to	Emit to	Waste-	Other	Notes	Ref.
	(%)	life (%)	-fill	or reuse	recover	erate	to air	land	water	water	(%)		
			(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		rates reported in second ref. at right with	
												remainder assumed to be emitted to land	
Fertilizer complex NPK	30	70	0	0	0	0	3	97	0	0	0	Longer lifetime is based on the nitrogen	68 69
	50	10	U	0	0	0	0	51	U	0	0	use efficiency of the U.S. (first ref. at right)	00,00
												Air emissions are based on volatization	
												rates reported in second ref at right with	
												remainder assumed to be emitted to land.	
Fertilizer, urea	30	70	0	0	0	0	32	68	0	0	0	Longer lifetime is based on the nitrogen	68,69
												use efficiency of the U.S. (first ref. at right).	
												Air emissions are based on volatization	
												rates reported in second ref. at right, with	
												remainder assumed to be emitted to land.	
Food	31	69	37	42	9	0	0	5	0	4	3	Data from 2019 includes residential,	70
												manufacturing, retailers, and distributors.	
												Recycling includes compost, donation,	
	100			-								animal feed, and anaerobic digestion.	
Gas treatment	100	0	0	0	0	0	0	0	0	100	0	Assume all consumed amines sent to	N/A
Gasoline	100	0	0	0	100	0	0	0	0	0	0	Assume all gasoline is burned for energy	N/A
Glass. container	100	0	55	31	13	0	0	0	0	0	0	Data from 2018.	N/A
Glass, flat	51	49	86	0	13	0	0	0	0	0	0	Data from 2018 for "durable" glass.	58
Glass, other	3	97	100	0	0	0	0	0	0	0	0	Assumed to be fiberglass for insulation	N/A
												(50-year lifetime) and automotives (10-	
												year) for average of 30 years.	
HDPE	92	8	78	9	13	0	0	0	0	0	1	Average from refs. (2015, 2018-2019).	5,6,58,71
Health care	100	0	3	0	0	0	0	0	2.3	94.7	0	3% of production thrown away; assume	72
												remainder sent to wastewater and septic	
												tanks (see cleaning agents).	
Herbicides	100	0	0	0	0	0	0	0	100	0	0	Herbicides kill aqueous weeds, so assume	N/A
												all ends up in water.	
LDPE	96	4	79	4	14.5	0	0	0	0	0	1	Average from refs. (2015, 2018-2019).	5,6,58,71
LLDPE	96	4	79	5	14.5	0	0	0	0	0	1	Average from refs. (2015, 2018-2019).	5,6,58,71
Lead acid balleries	20	80	0	0	0	0	0	0	0	100	0	Assume 5-year metime and that batteries	58
												are recycled, during which suituric acid is	
Losses ammonia	100	0	3	21	12	13	0	0	0	0	51	Data from 2021	73
Losses benzene	100	0	0	47	16	1	2	0	0	0	34	Data from 2021	73
Losses butanol	100	0	1	19	30	3	7	0	0	0	40	Data from 2021	73
Losses, ethylene	100	0	0	12	35	1	0	0	0	0	52	Data from 2021.	73
Losses, ethylene	100	0	0	67	0	0	0	0	0	0	33	Data from 2021.	73
dichloride													
Losses, ethylene glycol	100	0	5	64	4	1	0.5	0	0	3	22.5	Data from 2021.	73
Losses, ethylene oxide	100	0	0	0	2	1.5	0	0	0	0	96.5	Data from 2021.	73
Losses, formaldehyde	100	0	11	17	18	4	0	0	0	3	47	Data from 2021.	73
Losses, methanol	100	0	1	23	20	2	5	0	0	1	48	Data from 2021.	73
Losses, phenol	100	0	2.5	56	14	1	3	0	0	1	22.5	Data from 2021.	73
Losses, propylene	100	0	0	9	44	1	0	0	0	0	46	Data from 2021.	73

End-product	Dispose	Longer	Land	Recycle	Energy	Incin-	Emit	Emit to	Emit to	Waste-	Other	Notes	Ref.
	(%)	life (%)	-fill (%)	or reuse (%)	recover (%)	erate (%)	to air	land	water (%)	water (%)	(%)		
Losses, propylene	100	0	0	0	61	0	1	0	0	0	38	Data from 2021.	73
oxide													
Losses, sulfuric acid	100	0	0	90	0	0	0.5	0	0	0	9.5	Data from 2021.	73
Losses, styrene	100	0	3	3	35	4	39	0	0	0	16	Data from 2021.	73
Losses, toluene	100	0	0	70	13	2	1	0	0	0	14	Data from 2021.	73
Losses, xylenes	100	0	0	42	36	3	3	0	0	0	16	Data from 2021.	73
Metals & mining	100	0	0	0	0	0	0	0	0	100	0	Assume all mining chemicals end up in wastewater treatment.	74
Nylon 6 & 66	89	11	92	0	8	0	0	0	0	0	0	Data from 2019.	6
Other crops	0.1	99.9	100	0	0	0	0	0	0	0	0	Assume most crops have long lifetimes.	
Other polymers	94	6	82	7	9	0	0	0	0	0	3	Average from refs. for "other" (data from 2015, 2018-2019).	5,6,58,71
Paints & surface coatings	10	90	73	27	0	0	0	0	0	0	0	Data from 2007.	75,76
Paper coatings & additives	100	0	41	53	6	0	0	0	0	0	0	Average from refs. for paper and paperboard (2018-2019).	58,77
PC	79	21	82	9.5	8.5	0	0	0	0	0	0	Data from 2019.	6
Personal care	100	0	6	0	0	0	0	0	2.2	91.8	0	6% of production thrown away; assume	72
												remainder sent to wastewater and septic tanks (see cleaning agents).	
Pesticides	18	88	0	0	0	0	0	96	0.4	0	3.6	Data from 2015.	78
PET	92	8	71	16	13	0	0	0	0	0	0	Average from refs. (2015, 2018-2019).	5,6,58,71
Plastic additives	100	0	80	6	13	0	0	0	0	0	1	Average from refs. for total of all plastic types (data from 2015, 2018-2019).	5,6,58,71
PP	94	6	86	1	12	0	0	0	0	0	1	Average from refs. (2015, 2018-2019).	5,6,58,71
PS	84	16	83	2	15	0	0	0	0	0	0	Average from refs. (2015, 2018-2019).	5,6,58,71
Pulp & paper treatment	100	0	0	0	0	0	0	0	0	100	0	Assume all is sent to wastewater.	N/A
PUR	71	29	78.5	9	8.5	0	0	0	0	0	0	Average from refs. (2016 and 2019).	6,8
PVC	39	61	85	1	13	0	0	0	0	0	1	Average from refs. (2015, 2018-2019).	5,6,58,71
Refrigerants & air conditioning	8	92	79	21	0	0	0	0	0	0	0	A/C units have 12.5-year lifetime. Assume recycled or landfilled according to ref. (2021).	79
Rubbers	87	13	45	24	31	0	0	0	0	0	0	Average from refs. (2018-2019).	6,58
Solvent	100	0	0.4	39	19	2.3	4.2	0	0	0.3	35	Data for butanol, methanol, n- methylpyrrolidone, and methyl isobutyl ketone, as well as an estimated average for non-TRI chemicals (2021).	73
Superabsorbent polymers	100	0	80	0	20	0	0	0	0	0	0	Data for diapers only (2018).	80
Textiles processing	100	0	0	0	0	0	0	0	0	100	0	Assume all is sent to wastewater.	N/A
Water treatment	100	0	36	0	0	0	0	0	0	64	0	Assume the polymers and aluminas are used as coagulants and landfilled. Other components in wastewater	N/A
Wood laminates	5	95	100	0	0	0	0	0	0	0	0	Assume 20-year lifetime, then landfill.	N/A

Table S3. Chemical reactions for the chemical intermediates included in this study (continues to page S17).

Target chemical	Target category	Starting chemical	Chemical reaction
Polyethylene	End_product	Ethylene	
Ethylene oxide ^a	Tier 1 intermediate	Ethylene	$C_2 \Gamma_4 \rightarrow (C_2 \Gamma_4)_n$
Ethylene dichleride	Tier 1 intermediate		$20_{2}1_{4} + 0_{2} - 20_{2}1_{4}0$
	Tier 1 intermediate	Ethylene	$C_2\Pi_4 + C_{12} \rightarrow C_2\Pi_4 C_{12}$
	Tier 1 intermediate	Ethylene	$C_2\Pi_4 + C_6\Pi_6 - C_8\Pi_{10}$
Vinyi acetate		Ethylene	$2C_2H_4 + 2C_2H_4O_2 + O_2 \rightarrow 2C_4H_6O_2 + 2H_2O_2$
Acetaldehyde	Lier 1 intermediate	Ethylene	$C_2H_4 + H_2O \rightarrow C_2H_4O$
Ethylene glycol	Tier 2 intermediate	Ethylene oxide	$C_2H_4O + H_2O \rightarrow C_2H_6O_2$
Ethanolamines	Tier 2 intermediate	Ethylene oxide	$C_2H_4O + NH_3 \rightarrow C_2H_7NO$
E-series glycol ethers	Tier 2 intermediate	Ethylene oxide	$C_2H_4O + C_4H_{10}O \rightarrow C_6H_{14}O_2$
Polyethylene glycol	Tier 2 intermediate	Ethylene oxide	$C_2H_4O + C_2H_6O_2 \rightarrow (C_2H_4O)_n + 2H_2O$
Vinyl chloride	Tier 2 intermediate	Ethylene dichloride	$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$
Trichloroethylene	Tier 2 intermediate	Ethylene dichloride	$C_2H_4CI_2 + 2CI_2 \rightarrow C_2HCI_3 + 3HCI$
Styrene	Tier 2 intermediate	Ethylbenzene	$C_8H_{10} \rightarrow C_8H_8 + H_2$
Polyvinyl acetate	Tier 2 intermediate	Vinyl acetate	$C_4H_6O_2 \rightarrow (C_4H_6O_2)_n$
Polyvinyl alcohol	Tier 2 intermediate	Vinyl acetate	$C_4H_6O_2 + 2CH_4O \rightarrow 3C_2H_4O + H_2O$
Ethylene vinyl acetate ^b	Tier 2 intermediate	Vinyl acetate	$C_4H_6O_2 + 18C_2H_4 \rightarrow (C_2H_4)_{18}(C_4H_6O_2)$
Ethylene vinyl alcohol °	Tier 2 intermediate	Vinvl acetate	$C_4H_6O_2 + C_2H_4 \rightarrow (C_2H_4O_2C_2H_4)_2$
Polyethylene terephthalate	End-product	Ethylene glycol	$C_2H_0O_2 + C_0H_0O_4 \rightarrow C_{40}H_0O_4 + 2H_0O_4$
Polyurethanes	End-product	Ethylene glycol	$C_2 + C_3 $
1 olyulethanes			$(C \parallel N \cup) + N$
Ethylonoominoo	Tior 2 intermediate	Ethonolominoo	$(C_{271} I_{36} I_{2} O_{10})_{n} + I_{12}$
			$C_2 \Pi_7 NO + N\Pi_3 - C_2 \Pi_8 N_2 + \Pi_2 O$
Polyvinyl chloride	End-product	Vinyl chloride	$C_2H_3CI \rightarrow (C_2H_3CI)_n$
HFC-125	Tier 3 intermediate	Irichloroethylene	$C_2HCl_3 + 5HF \rightarrow C_2HF_5 + 3HCl + H_2$
HFC-134a	Tier 3 intermediate	Trichloroethylene	$C_2HCl_3 + 4HF \rightarrow C_2H_2F_4 + 3HCl$
Polystyrene	Tier 3 intermediate	Styrene	$C_8H_8 \rightarrow (C_8H_8)_n$
Acrylonitrile butadiene styrene	End-product	Styrene	$C_8H_8 + C_3H_3N + C_4H_6 \rightarrow (C_{15}H_{17}N)_n$
Styrene-butadiene rubber	End-product	Styrene	$C_8H_8 + C_4H_6 \rightarrow (C_{12}H_{14})_n$
Polyvinyl butyral	End-product	Polyvinyl alcohol	$2C_2H_4O + C_4H_8O \rightarrow (C_8H_{14}O_2)_n + H_2O$
Polypropylene	End-product	Propylene	$C_3H_6 \rightarrow (C_3H_6)_n$
Propylene oxide	Tier 1 intermediate	Popylene	$C_{3}H_{6}$ + NaOH + HOCI \rightarrow $C_{3}H_{6}O$ + NaCl + H ₂ O
Acrylonitrile	Tier 1 intermediate	Propylene	$C_{3}H_{6} + NH_{3} + 1.5O_{2} \rightarrow C_{3}H_{3}N + 3H_{2}O$
Cumene	Tier 1 intermediate	Propylene	$C_3H_6 + C_6H_6 \rightarrow C_9H_{12}$
Acrylic acid	Tier 1 intermediate	Propylene	$2C_2H_2 + 3O_2 \rightarrow 2C_2H_4O_2 + 2H_2O_2$
2-ethylbexanol	Tier 1 intermediate	Propylene	$2C_{2}H_{0} + 3CO + 6H_{0} \rightarrow C_{0}H_{0}O + CO_{0}$
Isopropapol	Tier 1 intermediate	Propylene	20316 + 500 + 612 + 581180 + 502
Butanol	Tior 1 intermediate	Propylono	
Enjoblorobydrin	Tier 1 intermediate	Propylene	$C_{3}\Pi_{6} + CO + 2\Pi_{2} \rightarrow C_{4}\Pi_{10}O$
	Tier 2 intermediate	Propylene Drapylana avida	$C_3 = C_1 + C_2 + C_3 = C_3 $
Propylene giycol	Tier 2 internediate	Propylene oxide	$C_3 \Pi_6 O + \Pi_2 O O_3 \Pi_8 O_2$
Butanediol	Tier 2 Intermediate	Propylene oxide	$C_2H_2 + 2CH_2O + 2H_2 \rightarrow C_4H_{10}O_2$
P-series glycol ethers	Tier 2 intermediate	Propylene oxide	$C_{3}H_{6}O + CH_{4}O \rightarrow C_{4}H_{10}O_{2}$
Acrylamide	Lier 2 intermediate	Acrylonitrile	$C_3H_3N + H_2O \rightarrow C_3H_5NO$
Adiponitrile	Tier 2 intermediate	Acrylonitrile	$2C_3H_3N \rightarrow C_6H_8N_2$
Nitrile rubber ^a	Tier 2 intermediate	Acrylonitrile	$C_3H_3N + C_4H_6 \rightarrow (C_3H_3N)(C_4H_6)$
Carbon fiber	Tier 2 intermediate	Acrylonitrile	$C_3H_3N + O_2 \rightarrow 2C + CO_2 + NH_3$
Phenol	Tier 2 intermediate	Cumene	$C_9H_{12} + O_2 \rightarrow C_6H_6O + C_3H_6O$
Acetone	Tier 2 intermediate	Cumene	$C_9H_{12} + O_2 \rightarrow C_6H_6O + C_3H_6O$
Acrylate esters	Tier 2 intermediate	Acrylic acid	$C_{3}H_{4}O_{2} + C_{4}H_{10}O \rightarrow C_{7}H_{12}O_{2} + H_{2}O$
Superabsorbent polymers	End-product	Acrylic acid	$C_3H_4O_2 \rightarrow (C_3H_4O_2)_n$
Methyl isobutyl ketone	Tier 2 intermediate	Isopropanol	$2C_3H_6O \rightarrow C_6H_{12}O$
n-butyl acetate	Tier 2 intermediate	Butanol	$C_4H_{10}O + C_2H_4O_2 \rightarrow C_6H_{12}O_2 + H_2O_2$
Butylamines	Tier 2 intermediate	Butanol	$C_4H_{40}O + NH_2 \rightarrow C_4H_{44}N + H_2O$
Tetrahydrofuran	Tier 3 intermediate	Butanediol	$C_4H_{40}O_2 \rightarrow C_4H_{40}O + H_{20}O_{40}$
Gamma-butyrolactone	Tier 3 intermediate	Butanediol	$C_4H_1O_2 \rightarrow C_4H_2O_2 + 2H_2O_2$
Polybutylong torophthalato	End product	Butanediol	$C_{4111002} \rightarrow C_{411602} + 2112$
Polyacrylamida	Tior 3 intermediate	Acrulamido	$C \parallel NO \rightarrow (C \parallel NO)$
Howenothylene diamine	Tier 2 intermediate	Acrylamide	$C_{3} I_{5} NO \rightarrow (C_{3} I_{5} NO)_{n}$
Rexametriylene diamine	Tier 3 internediate	Acrylamide	$C_6 R_8 N_2 + 4R_2 \rightarrow C_6 R_{16} N_2$
Bisphenol A	Tier 3 Intermediate	Phenoi	$2C_6H_6O + C_3H_6O - 7C_{15}H_{16}O_2$
Methyl methacrylate	Tier 3 intermediate	Acetone	$C_{3}H_{6}O + CH_{4}O + HCN + H_{2}SO_{4} \rightarrow C_{5}H_{8}O_{2} + NH_{4}HSO_{4}$
N-methyl-2-pyrrolidone	Tier 4 intermediate	Gamma-butyrolactone	$C_4H_6O_2 + CH_5N \rightarrow C_5H_9NO + H_2O$
Polycarbonate	End-product	Bisphenol A	$C_{15}H_{16}O_2 + COCl_2 + 2NaOH \rightarrow (C_{16}H_{14}O_3)_n + 2NaCl + 2H_2O$
Polymethyl methacrylate	End-product	Methyl methacrylate	$C_5O_2H_8 \rightarrow (C_5O_2H_8)_n$
Methyl tert-butyl ether	Tier 1 intermediate	Butylenes	$CH_4O + C_4H_8 \rightarrow C_5H_{12}O$
Ethyl tert-butyl ether	Tier 1 intermediate	Butylenes	$C_2H_6O + C_4H_8 \rightarrow C_6H_{14}O$
Polyisobutylene	End-product	Methyl tert-butyl ether	$C_5H_{12}O \rightarrow C_4H_8 + CH_4O$
Polybutadiene	End-product	Butadiene	$C_4H_6 \rightarrow (C_4H_6)_{r}$

Target chemical	Target category	Starting chemical	Chemical reaction
Nitrobenzene	Tier 1 intermediate	Benzene	$C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$
Cyclohexanol / cyclohexanone	Tier 1 intermediate	Benzene	$2C_6H_6 + 5H_2 + O_2 \rightarrow C_6H_{12}O + C_6H_{10}O$
Alkylbenzene	Tier 1 intermediate	Benzene	$C_{eHe} + C_{eH_{12}} \rightarrow C_{12H_{18}}$
Aniline	Tier 2 intermediate	Nitrobenzene	$C_{c}H_{c}NO_{a} + H_{a} \rightarrow C_{c}H_{z}N + O_{a}$
Adinic acid	Tier 2 intermediate		$(C_0H_{10}O_1 + C_0H_{10}O_1) + HNO_0 \rightarrow 2C_0H_{10}O_1$
	Tier 2 intermediate		$(C \parallel O + C \parallel O) + N \parallel \rightarrow 2C \parallel NO + 15 \parallel$
Capitiaciam Mathudana dinhanud	Tier 2 internediate		$(C_6\Pi_{12}O + C_6\Pi_{10}O) + N\Pi_3 - 2C_6\Pi_{11}NO + 1.3\Pi_2$
	Ther 5 Intermediate	Aniine	$2G_{6}\Pi_{7}\Pi_{7} + C\Pi_{2}O_{7} + 2COCI_{2} \rightarrow C_{15}\Pi_{10}\Pi_{2}O_{2} + 4\Pi CI_{7} + \Pi_{2}O_{7}$
diisocyanate			
Nylon 6	End-product	Caprolactam	$C_6H_{11}NO \rightarrow (C_6H_{11}NO)_n$
Nylon 66	End-product	Hexamethylenediamine	$C_6H_{12}N_2 + C_6H_{10}O_4 \rightarrow (C_{12}H_{22}N_2O_2)_n + H_2O_1$
Toluene diisocyanate	Tier 1 intermediate	Toluene	$C_7H_8 + 2HNO_3 + 2COCI_2 + 6H_2 \rightarrow C_9H_6N_2O_2 + 6H_2O + 4HCI$
Benzoic acid	Tier 1 intermediate	Toluene	$C_7H_8 + 1.5O_2 \rightarrow C_7H_6O_2 + H_2O$
Sodium / potassium benzoate	Tier 2 intermediate	Benzoic acid	$C_7H_6O_2$ + NaOH $\rightarrow C_7H_5NaO_2$ + H_2O
Isophthalic acid	Tier 1 intermediate	Meta-xylene	$C_8H_{10} + 3O_2 \rightarrow C_8H_6O_4 + 2H_2O$
Terephthalic acid	Tier 1 intermediate	Para-xylene	$C_8H_{10} + 3O_2 \rightarrow C_8H_6O_4 + 2H_2O$
Dimethyl terephthalate	Tier 1 intermediate	Para-xylene	$C_8H_{10} + 3O_2 + 2CH_4O \rightarrow C_{10}H_{10}O_4 + 4H_2O$
Phthalic anhydride	Tier 1 intermediate	Ortho-xylene	$C_8H_{10} + 3O_2 \rightarrow C_8H_4O_3 + 3H_2O$
Formaldehvde	Tier 1 intermediate	Methanol	$CH_4O \rightarrow CH_2O + H_2$
Acetic acid	Tier 1 intermediate	Methanol	$CH_{4}O + CO \rightarrow C_{2}H_{4}O_{2}$
Methylamines	Tier 1 intermediate	Methanol	$CH_{4}O + NH_{2} \rightarrow CH_{2}N + H_{2}O$
Methyl chloride	Tier 1 intermediate	Methanol	$CH_{10} + HCI_{12} \rightarrow CH_{10}CI_{12} + H_{10}$
Relyanatel regine	End product	Formaldabyda	$CH_{40} \rightarrow (CH_{10})$
Polyacetal resilis	Tion Q internet diete	Formaldehyde	
PenlaeryInnio		Formaldenyde	$3CH_2O + C_2H_4O + H_2 \rightarrow C_5H_{12}O_4$
Acetic annydride	Tier 2 intermediate	Acetic acid	$2C_2H_4O_2 \rightarrow C_4H_6O_3 + H_2O$
Methylene chloride	Tier 2 intermediate	Methyl chloride	$CH_3CI + CI_2 \rightarrow CH_2CI_2 + HCI$
Methyl chlorosilanes	Tier 2 intermediate	Methyl chloride	$2CH_3CI + Si \rightarrow C_2H_6Cl_2Si$
Cellulose acetates	Tier 3 intermediate	Acetic anhydride	$4C_4H_6O_3 + 4(C_6H_{10}O_5)_n + H_2O \rightarrow C_{20}H_{38}O_{11}$
Chloroform	Tier 3 intermediate	Methylene chloride	$CH_2CI_2 + CI_2 \rightarrow CHCI_3 + HCI$
HFC-32	Tier 3 intermediate	Methylene chloride	$CH_2CI_2 + 2HF \rightarrow CH_2F_2 + 2HCI$
Silicones	Tier 3 intermediate	Methyl chlorosilanes	$C_2H_6Cl_2Si + H_2O \rightarrow (CH_3)_2OSi)_n + 2HCl$
Carbon tetrachloride	Tier 4 intermediate	Chloroform	$CHCI_3 + CI_2 \rightarrow CCI_4 + HCI$
HCFC-22	Tier 4 intermediate	Chloroform	$CHCI_3 + 2HF \rightarrow CHCIF_2 + 2HCI$
Urea	Tier 1 intermediate	Ammonia	$2NH_3 + CO_2 \rightarrow COH_4N_2 + H_2O_2$
Nitric acid	Tier 1 intermediate	Ammonia	$NH_2 + 2\Omega_2 \rightarrow HN\Omega_2 + H_2\Omega$
Ammonium phosphate	Tier 1 intermediate	Ammonia	$NH_{2} + H_{2}PO_{4} \rightarrow NH_{4}H_{2}PO_{4}$
Ammonium sulfate	Tier 1 intermediate	Ammonia	$2NH_{0} + H_{0}SO_{1} \rightarrow (NH_{1})_{0}SO_{1}$
Hydrogen cyanide	Tier 1 intermediate	Ammonia	$2NH_a + 2CH_a + 3O_a \rightarrow 2HCn + 6H_aO$
Molomino	Tior 2 intermediate	Hrop	$\frac{2}{10} + \frac{2}{10} $
	Tier 2 internetiate		$10001_{4}N_{2} \rightarrow 0_{3}1_{6}N_{6} + 0101_{3} + 300_{2}$
Ammonium nitrate	Tier 2 Intermediate		$HNO_3 + NH_3 \rightarrow NH_4NO_3$
Sodium cyanide		Hydrogen cyanide	$HCN + NaOH \rightarrow NaCN + H_2O$
Phosgene	Tier 1 intermediate	Chlorine	$CO + Cl_2 \rightarrow COCl_2$
Aluminum chloride	Tier 1 intermediate	Chlorine	$3CI_2 + AI_2O_3 \rightarrow 2AICI_3 + 1.5O_2$
Sodium hypochlorite	Tier 1 intermediate	Chlorine	$Cl_2 + 2NaOH \rightarrow NaOCI + NaCI + H_2O$
Calcium hypochlorite	Tier 1 intermediate	Chlorine	$2CI_2 + 2NaOH + Ca(OH)_2 \rightarrow Ca(OCI)_2 + 2NaCI + 2H_2O$
Titanium dioxide	Tier 1 intermediate	Chlorine	$2CI_2 + TiO_2 \rightarrow TiO_2 + 2CI_2$
Aluminum oxide	Tier 1 intermediate	Sodium hydroxide	NaOH + $AI_2O_3 \rightarrow AI_2O_3$ + NaOH
Sodium hydrosulfide	Tier 1 intermediate	Sodium hydroxide	NaOH + $H_2S \rightarrow NaSH + H_2O$
Sodium hydrosulfite	Tier 1 intermediate	Sodium hydroxide	$2NaOH + 2SO_2 \rightarrow Na_2S_2O_4 + O_2$
Sodium sulfide	Tier 1 intermediate	Sodium hydroxide	$2NaOH + 2SO_2 \rightarrow Na_2S_2O_4 + O_2$
Sodium sulfite	Tier 1 intermediate	Sodium hydroxide	$2NaOH + 2SO_2 + Na_2CO_3 \rightarrow 2Na_2SO_3 + CO_2 + H_2O_2$
Sodium thiosulfate	Tier 1 intermediate	Sodium hydroxide	$2NaOH + 2SO_2 \rightarrow Na_2S_2O_3 + H_2O + O_2$
Aluminum metal	Tier 2 intermediate	Aluminum oxide	$2A _{0}O_{2} + 3C \rightarrow 4A + 3CO_{2}$
Aluminum sulfate	Tier 2 intermediate	Aluminum oxide	$A _{\circ}O_{\circ} + 3H_{\circ}SO_{\circ} \rightarrow A _{\circ}(SO_{\circ})_{\circ} + 3H_{\circ}O$
Sodium aluminate	Tier 2 intermediate		$Al_{2}O_{3} + 2N_{2}OH \rightarrow 2N_{2}AlO_{3} + H_{2}O$
Dhosphoric acid	Tior 1 intermediate	Sulfurio acid	$34.50 \pm C_{2}$ (DO) $\rightarrow 34.00 \pm 30.50$
			$\frac{1}{2} \frac{1}{2} \frac{1}$
Glass	End-product	Sodium carbonate	$0.15 \text{INa}_2 \text{CO}_3 + 0.75 \text{SIO}_2 + 0.10 \text{CaO} \rightarrow (0.10 \text{ CaO}_2) + (0.10 \text{ CaO}_$
			$(Na_2U)_{0.15}(SIU_2)_{0.75}(CaO)_{0.10} + 0.15CO_2$
Sodium silicate	Lier 1 intermediate	Sodium carbonate	$Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2$
Sodium bicarbonate	Tier 1 intermediate	Sodium carbonate	$Na_2CO_3 + CO_2 + H_2O \rightarrow SiO_2 + Na_2SO_4 + H_2O$
Silicas	Tier 2 intermediate	Sodium silicate	$Na_2SiO_3 + H_2SO_4 \rightarrow SiO_2 + Na_2SO_4 + H_2O$
a Cide meantion of CIL 100 NO			

^aSide reaction of: $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$

 $^{\rm b}\,{\rm EVA}$ is typically 15wt% vinyl acetate

 $^{\rm c}{\rm EVOH}$ is typically 25-50 mol% ethylene.

^d Acrylonitrile content varies from 16-53%. 50% assumed here. ^e Ratio of sodium carbonate, silica, and lime based on ref. ⁸¹

Table S4. Greenhouse gas (GHG) emission factors for the studied chemical classes, where the low and high values are the minimum and maximum of the range of factors sourced from ecoinvent 3.9.1 (with ReCiPe H midpoint method), Carbon Minds, and the Material Flows through Industry tool, in kilogram of carbon dioxide equivalent per kilogram of chemical. Quantity of the chemical class that is wasted each year in the United States (landfill, wastewater treatment, or emission to air, water, or land), in million metric tons (Mt). Total GHG emissions associated with the production of each chemical class for applications that end up being wasted, in Mt carbon dioxide equivalent.

Chemical	GHG emissions,	GHG emissions,	Quantity wasted	Wasted GHG emissions,	Wasted GHG emissions,
	low (kg CO ₂ eq./kg)	high (kg CO₂ eq./kg)	(Mt)	low (Mt CO₂ eq.)	high (Mt CO₂ eq.)
Ethylene	0.80	1.93	15.1	12.1	29.1
Propylene	0.95	1.56	6.89	6.55	10.8
Butylenes	1.70	2.39	0.14	0.24	0.33
Benzene	1.23	2.01	2.45	3.01	4.91
Xylenes	1.11	1.84	2.11	2.34	3.88
Toluene	1.00	1.69	0.15	0.15	0.25
Butadiene	1.23	2.37	0.18	0.22	0.43
Ethanol	1.44	3.02	0.31	0.45	0.94
Methanol	0.43	0.93	1.28	0.55	1.19
Sulfuric acid	0.13	0.19	4.93	0.63	0.93
Ammonia	0.51	3.40	8.59	4.38	29.2
Sodium hydroxide	1.18	2.72	4.50	5.31	12.3
Sodium carbonate	0.47	1.33	2.32	1.10	3.07
Chlorine	1.10	2.23	2.95	3.23	6.58

Table S5. Chemicals that are wasted (landfill, wastewater treatment, or emission to air, water, or land) and are listed in the EPA Toxics Release Inventory, as well as their parent chemical and end-product application(s). Human toxicity (carcinogenic and non-carcinogenic) factors for each chemical as calculated from ecoinvent 3.9.1 data and the ReCiPe H endpoint method, in disability adjusted life years (DALYs) per kilogram of chemical. Quantity of each chemical disposed, in million metric tons (Mt), and the total toxicity associated with this waste, in DALYs.

Chemical	Parent chemical	Product type	Proxy chemical	Human toxicity	Quantity disposed	Total human
				(DALYs / kg)	(Mt)	toxicity (DALYs)
Acetic anhydride	Methanol	Health care	N/A	1.35E-6	0.020	26.9
Acrylate esters	Propylene	Paper/plastic additives, functional fluids, paint	Butyl acetate	1.55E-6	0.079	122
Acrylic acid	Propylene	Paper/plastic additives, cleaning agents, water treatment	N/A	4.63E-7	0.077	35.4
Acetaldehyde	Ethylene	Personal care	N/A	5.37E-7	0.010	5.4
Ammonia	Ammonia	Crops and food, mining	N/A	6.83E-7	1.32	899
Carbon tetrachloride	Methanol	Functional fluids	N/A	3.85E-7	0.003	1.1
Chlorine	Chlorine	Pulp and paper, water treatment	N/A	4.59E-7	0.68	312
Epichlorohydrin	Propylene	Paints, functional fluids	N/A	1.19E-6	0.012	14.2
Ethanolamine	Ethylene	Mining, cleaning agents, wood laminates, other industrial	N/A	9.22E-7	0.19	173
Ethoxylates	Ethylene	Cleaning agents	Ethoxylated alcohol (AE11)	7.92E-7	0.58	459
Ethylene glycol	Ethylene	Functional fluids	N/A	7.00E-7	0.74	518
Formaldehyde	Methanol	Wood laminates	N/A	4.05E-7	0.04	16.0
HFC-32	Methanol	Functional fluids	Trifluoro-methane	6.48E-6	0.004	30.5
Hydrofluoric acid	Sulfuric acid	Functional fluids, mining	N/A	3.66E-6	0.024	87.8
Isopropanol	Propylene	Solvents, health care	N/A	7.03E-7	0.18	129
Methanol	Methanol	Solvents	N/A	1.69E-7	0.036	6.1
Methyl isobutyl ketone	Propylene	Paper/plastic additives, functional fluids, paints	N/A	1.09E-6	0.009	10.0
Methyl methacrylate	Propylene	Paints	N/A	5.33E-7	0.014	7.4
Methylamine	Methanol	Pulp and paper, water treatment, cleaning agents, other industrial use	N/A	9.02E-7	0.12	106
Methylene chloride	Methanol	Health care, paints	N/A	5.34E-7	0.021	11.1
N-methyl-2-pyrrolidone	Propylene	Paints, solvents	N/A	2.33E-6	0.007	15.7
Nitric acid	Ammonia	Mining	N/A	3.79E-7	0.040	15.2
Phenol	Propylene	Wood laminates	N/A	8.61E-7	0.034	28.9
Phthalic anhydride	Xylenes	Paints,	N/A	5.22E-7	0.002	1.1
Silicones	Methanol	Paper/plastic additives, cleaning agents, functional fluids, health care, paints, personal care	N/A	9.81E-7	0.099	96.7
Sodium cyanide	Ammonia	Mining	N/A	1.28E-6	0.050	64.2
Sulfuric acid	Sulfuric acid	Mining, pulp and paper	N/A	1.14E-6	2.61	2980
Toluene	Toluene	Solvents	N/A	9.09E-8	0.034	3.1

Table S6. Assumptions for the circularity targets and optimistic circularity scenarios.

Product	Relevant chemical class(es)	Circular economy strategy	Measure for circularity targets (M1)	Measure for optimistic circularity (M2)	Justification	Ref.
Antifreeze	Ethylene	Recycle	N/A	80%	M2 assumes the same recycling rate for paint is applicable to antifreeze.	
Food	Ammonia,	Reduce,	15% food	10% food wasted,	M1 based on EPA's food waste reduction target. M2 assumes food waste can be further	70,82
	sulfuric acid	Recycle	wasted	76% of waste	reduced and that overall composting rate can meet that of the food manufacturing and	
				recycled	processing sector.	
Glass	Sodium carbonate	Recycle	50%	66%	M1 based on EPA's recycling target. M2 assumes only container and other glass can be recycled with a maximum sorting/recycling yield of 98%	83,84
HDPE	Ethylene	Recycle	50%	88%	M1 based on EPA's recycling target M2 based on maximum sorting yield (95%) and	83 85
	Eurylono	rteeyete	00/0	00/0	mechanical recycling (93%) vield	00,00
IDPE/IIDPE	Ethylene	Recycle	50%	90%	M1 based on EPA's recycling target. M2 based on maximum sorting vield (95%) and	83 85
	,	···· j ····	••••		mechanical recycling vield (95%).	,
Nvlon 6/66	Propylene.	Recvcle	50%	90%	M1 based on EPA's recycling target. M2 based on maximum sorting vield (95%) and chemical	83.86
,	benzene	,			recycling vield (95%)	,
Other		Recycle	50%	50%	M1 based on EPA's 50% recycling target. M2 assumes no further improvement is possible.	83
polymers						
Paints and	Ethylene,	Recycle	N/A	80%	M2 assumes that 20% of paint is unrecyclable.	87
coatings	propylene, methanol,					
	chlorine					
PC	Propylene, chlorine	Recycle	50%	50%	M1 based on EPA's 50% recycling target. M2 assumes no further improvement is possible.	83
PET	Ethylene,	Recycle	50%	95%	M1 based on EPA's recycling target. M2 based on maximum sorting yield (95%) and	83,85
	xylenes				mechanical recycling yield (90%), with remainder sent to chemical recycling (95% yield).	
PP	Propylene	Recycle	50%	90%	M1 based on EPA's recycling target. M2 based on maximum sorting yield (95%) and mechanical recycling yield (95%)	83,85
PUR	Ethylene	Recycle	50%	68%	M1 based on EPA's recycling target. M2 assumes that recycling is only applicable to	83 88 89
	benzene		00/0	00/0	rigid/flexible foams and elastomers (75% of total PUR) with a 90% glycolysis vield.	00,00,00
PVC	Ethylene,	Recycle	50%	50%	M1 based on EPA's 50% recycling target. M2 assumes no further improvement is possible.	83
Rubbers	Ethylene.	Recvcle	50%	75%	M1 based on EPA's recycling target. M2 assumes a moderate increase in recycling is	83
	butylenes, butadiene, methanol				attainable.	
Solvents	Propylene,	Recycle	N/A	85%	M2 assumes that the maximum recycling rate reported for a solvent (N-methylpyrrolidone) in	73
	toluene, ethanol, methanol,				the TRI can be applied to all solvents.	

Sodium hydroxide Sodium carbonate Propylene Butadiene Butylenes Ammonia Ethylene Methanol Benzene Sulfuric acid Chlorine Xylenes Toluene Ethanol Total End-product 1.23 0.49 0.13 0.10 0.01 1.96 Adhesives, sealants & --------------------------functional fluids Aluminum metal 1.63 1.63 ---------------------------------------0.03 ---0.03 1.68 3.24 0.25 5.23 Animal feed ------------------------Cigarettes 0.54 0.03 0.57 -----------------------------------Cleaning agents 0.72 0.06 ---0.16 ------------0.10 0.08 ---1.01 0.69 0.51 3.33 Explosives ------------------------------2.21 --------2.21 Fertilizers ---------------2.05 ------4.54 ---6.59 ------------Food 0.02 ---0.02 ---1.07 2.01 0.15 3.27 ---------------------Gasoline 0.02 6.02 1.30 37.9 48.43 ---2.56 0.63 --------------------Glass 2.64 2.64 --------------------------------------Health & personal care 0.04 0.40 ---------------0.25 0.12 0.06 --0.04 0.14 ---1.05 Lead acid batteries ---------------------0.34 -----0.01 ---0.35 Mining & metals 0.04 0.02 ---2.20 0.09 0.11 2.46 -----------------------Nylon 6/66 0.03 0.93 0.38 ---1.34 ------------------------------Other crops ---3.09 5.84 -----8.93 --------------------------Other industrial uses 0.32 0.06 0.02 0.51 0.27 1.18 ---------------------------------------0.14 ---------Other polymers 0.58 0.88 0.05 0.23 ---1.88 ---Paints & coatings 0.43 0.83 0.04 0.05 0.02 ---0.04 0.57 1.98 ------------------Plastic/paper additives 0.21 0.29 0.04 0.01 0.28 0.83 --------------------------Polycarbonates 0.66 0.23 --0.37 1.26 ---------------------------Polyethylene, high density 8.54 --8.54 ----------------------------------Polyethylene, low density 10.94 ---10.94 ------------------------------------Polyethylene terephthalate 1.54 0.15 ---4.85 -----3.16 -----------------------Polypropylene 7.43 ---7.43 -----------------------------------1.42 ---0.02 Polystyrene 0.50 ------------------------------1.94 Polvurethanes 1.29 0.28 0.84 0.05 2.46 ---------------------------Polyvinyl chloride 3.13 ---------0.12 ------------------3.84 7.09 -----Pulp & paper treatment 0.03 --------------------0.02 0.34 ---2.18 0.12 0.13 2.82 Rubbers 0.49 0.06 0.36 ------0.35 ---0.20 ---1.46 --------------Solvents 0.89 0.56 0.46 1.95 ---0.04 ------------------------------0.04 1.29 1.32 Water treatment 0.12 --------------------0.05 2.82 ---Wood laminates 0.02 0.67 0.79 2.14 0.66 ------------------------------

Chemical class (Mt)

Table S7. Disposal of end-of-life chemicals by chemical class and end-product category, in million metric tons (Mt).

Table S8. Disposal of end-of-life che	micals by chemical class ar	nd disposal type, in millior	n metric tons (Mt).
	,	1 21 2	

Chemical	Longer	Recycling /	Energy	Landfill	Wastewater	Air emissions	Land emissions	Water emissions	Other	Total
	life (Mt)	reuse (Mt)	recover (Mt)	(Mt)	(Mt)	(Mt)	(Mt)	(Mt)	(Mt)	(Mt)
Ethylene	3.60	1.90	2.70	14.2	0.80	0.00	0.00	0.00	0.50	23.7
Propylene	2.30	0.60	1.50	6.20	0.60	0.10	0.00	0.00	1.30	12.6
Butylenes	0.10	0.20	6.30	0.10	0.00	0.00	0.00	0.00	0.15	6.85
Benzene	0.60	0.10	0.40	2.30	0.15	0.00	0.00	0.00	0.11	3.66
Xylenes	0.30	0.80	2.00	2.10	0.00	0.00	0.00	0.00	0.15	5.35
Toluene	0.10	0.20	2.70	0.10	0.00	0.00	0.00	0.00	0.31	3.41
Butadiene	0.05	0.10	0.10	0.20	0.00	0.00	0.00	0.00	0.00	0.45
Ethanol	0.14	0.04	37.9	0.06	0.24	0.00	0.00	0.00	0.02	38.4
Methanol	0.90	0.37	1.00	0.51	0.28	0.05	0.42	0.02	0.74	4.29
Sulfuric acid	4.52	7.18	0.08	0.13	2.75	0.07	2.72	0.02	1.35	18.8
Ammonia	8.69	2.00	0.20	0.32	0.12	3.04	5.11	0.00	1.51	21.0
Sodium hydroxide	0.49	0.31	0.21	1.16	4.61	0.00	0.00	0.02	0.01	6.81
Sodium carbonate	1.27	0.55	0.23	1.22	0.98	0.00	0.10	0.02	0.35	4.72
Chlorine	2.21	0.82	0.48	1.23	2.01	0.03	0.00	0.01	0.84	7.63
Total	25.3	15.2	55.8	29.8	12.5	3.29	8.35	0.09	7.42	157.7
Ethylene – circularity targets	3.57	9.15	2.65	6.97	0.82	0.00	0.00	0.03	0.51	23.7
Propylene – circularity targets	2.34	3.97	1.54	2.86	0.58	0.07	0.00	0.01	1.17	12.5
Butylenes – circularity targets	0.05	0.27	6.26	0.06	0.00	0.00	0.00	0.00	0.18	6.83
Benzene – circularity targets	0.63	1.38	0.36	1.02	0.16	0.00	0.00	0.00	0.11	3.66
Xylenes – circularity targets	0.33	1.79	1.96	1.08	0.00	0.02	0.00	0.00	0.13	5.32
Toluene – circularity targets	0.08	0.23	2.72	0.06	0.00	0.03	0.00	0.00	0.27	3.39
Butadiene – circularity targets	0.05	0.20	0.10	0.08	0.00	0.00	0.00	0.00	0.02	0.45
Ethanol – circularity targets	0.17	0.04	37.9	0.04	0.24	0.00	0.00	0.01	0.02	38.4
Methanol – circularity targets	0.90	0.55	0.98	0.33	0.28	0.05	0.42	0.02	0.74	4.26
Sulfuric acid – circularity targets	4.69	7.11	0.06	0.07	2.75	0.07	2.71	0.02	1.34	18.8
Ammonia – circularity targets	9.01	1.88	0.17	0.18	0.11	3.04	8.31	0.00	1.50	21.0
Sodium hydroxide – circularity targets	0.49	0.79	0.13	0.77	4.61	0.00	0.00	0.02	0.00	6.81
Sodium carbonate – circularity targets	1.29	1.00	0.23	0.75	0.98	0.00	0.09	0.02	0.36	4.72
Chlorine – circularity targets	2.21	1.46	0.48	0.58	2.01	0.03	0.00	0.01	0.85	7.62
Total – circularity targets	25.8	29.8	55.5	14.8	12.5	3.34	8.31	0.13	7.20	157.5
Ethylene – optimistic circularity	3.57	15.8	0.85	2.15	0.82	0.00	0.00	0.03	0.51	23.7
Propylene – optimistic circularity	2.34	6.93	0.75	1.06	0.58	0.07	0.00	0.01	0.80	12.5
Butylenes – optimistic circularity	0.05	0.35	6.21	0.03	0.00	0.00	0.00	0.00	0.18	6.83
Benzene – optimistic circularity	0.63	2.32	0.11	0.33	0.16	0.00	0.00	0.00	0.11	3.66
Xylenes – optimistic circularity	0.34	3.03	1.63	0.17	0.00	0.02	0.00	0.00	0.13	5.32
Toluene – optimistic circularity	0.08	0.62	2.58	0.04	0.00	0.03	0.00	0.00	0.04	3.39
Butadiene – optimistic circularity	0.05	0.28	0.05	0.05	0.00	0.00	0.00	0.00	0.02	0.45
Ethanol – optimistic circularity	0.18	0.06	37.9	0.03	0.24	0.00	0.00	0.01	0.00	38.4
Methanol – optimistic circularity	0.90	0.90	0.87	0.30	0.28	0.06	0.42	0.02	0.54	4.26
Sulfuric acid – optimistic circularity	4.75	7.12	0.05	0.02	2.75	0.07	2.71	0.02	1.34	18.8
Ammonia – optimistic circularity	9.11	1.91	0.15	0.09	0.11	3.04	5.09	0.00	1.50	21.0
Sodium hydroxide - optimistic circularity	0.48	1.28	0.03	0.31	4.61	0.00	0.00	0.02	0.00	6.73
Sodium carbonate – optimistic circularity	1.30	1.28	0.16	0.53	0.98	0.00	0.09	0.02	0.36	4.72
Chlorine – optimistic circularity	2.21	1.49	0.48	0.55	2.01	0.03	0.00	0.01	0.85	7.62
Total – optimistic circularity	26.0	43.3	51.8	5.66	12.5	3.34	8.31	0.13	6.38	157.4

Table S9. Quantity of the chemical class that is wasted each year in the United States (landfill, wastewater treatment, or emission to air, water, or land) with different circularity scenarios, in million metric tons (Mt). Total greenhouse gas (GHG) emissions associated with the production of each chemical class for applications that end up being wasted, in Mt carbon dioxide equivalent.

	Circularity targets scenario			Optimistic circul		
Chemical	Quantity wasted (Mt)	Wasted GHG emissions, low (Mt CO ₂ eq.)	Wasted GHG emission, high (Mt CO₂ eq.)	Quantity wasted (Mt)	Wasted GHG emissions, low (Mt CO₂ eq.)	Wasted GHG emission, high (Mt CO₂ eq.)
Ethylene	7.82	6.26	15.1	3.00	2.40	5.78
Propylene	3.53	3.35	5.52	1.72	1.63	2.69
Butylenes	0.06	0.11	0.15	0.04	0.06	0.09
Benzene	1.18	1.45	2.37	0.49	0.61	0.99
Xylenes	1.11	1.23	2.03	0.20	0.22	0.36
Toluene	0.09	0.09	0.15	0.07	0.07	0.12
Butadiene	0.08	0.09	0.18	0.05	0.06	0.12
Ethanol	0.28	0.40	0.85	0.27	0.40	0.83
Methanol	1.09	0.47	1.02	1.07	0.46	0.99
Sulfuric acid	5.60	0.71	1.05	5.55	0.70	1.04
Ammonia	8.42	4.30	28.6	8.33	4.25	28.3
Sodium hydroxide	4.10	4.84	11.2	3.65	4.30	9.93
Sodium carbonate	1.84	0.87	2.44	1.62	0.77	2.15
Chlorine	1.30	1.43	2.91	1.27	1.40	2.84

References

- 1 S&P Global, *Chemical Economics Handbook (CEH)*, 2023.
- 2 S. R. Nicholson, N. A. Rorrer, T. Uekert, G. Avery, A. C. Carpenter and G. T. Beckham, *ACS Sustain. Chem. Eng.*, 2023, **11**, 2198–2208.
- 3 United States Department of Energy, U.S. Ethane: Market Issues and Opportunities, 2021.
- 4 S. R. Nicholson, N. A. Rorrer, A. C. Carpenter and G. T. Beckham, *Joule*, 2021, 5, 673–686.
- J. Di, B. K. Reck, A. Miatto and T. E. Graedel, *Resour. Conserv. Recycl.*, 2021, **167**, 105440.
- T. P. Hendrickson, B. Bose, N. Vora, T. Huntington, S. L. Nordahl, B. A. Helms and C. D. Scown, *One Earth*, 2024, 7, 520–531.
- 7 D. Ozokwelu and M. Mukherjee, *New Process Chemistry for Producing Styrene Monomer Saves Energy, Reduces Emissions*, 2012.
- 8 C. Liang, U. R. Gracida-Alvarez, E. T. Gallant, P. A. Gillis, Y. A. Marques, G. P. Abramo, T. R. Hawkins and J. B. Dunn, *Environ. Sci. Technol.*, 2021, **55**, 14215–14224.
- 9 Expanded HFC Data | US EPA, https://www.epa.gov/climate-hfcs-reduction/hfc-data-hub/expanded-hfc-data, (accessed 20 June 2024).
- 10 U.S. Refinery Net Production of Propylene (Thousand Barrels), https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MPLRX_NUS_1&f=M, (accessed 20 June 2024).
- 11 Cumene American Chemistry Council, https://www.americanchemistry.com/industry-groups/cumene, (accessed 20 June 2024).
- 12 Chinese acrylic acid supply to get better with change in policies and demand scenario, https://www.beroeinc.com/article/acrylic-acid/, (accessed 20 June 2024).
- 13 J. A. Okolie, *iScience*, 2022, **25**, 104903.
- 14 United States Environmental Protection Agency, *Acrylamide Supply Chain Executive Summary*, 2022.
- 15 J. J. Cook and S. Booth, *Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison*, 2017.
- 16 Superabsorbent Polymer Makers In The World And Their Production Capacities | Nonwovens Industry, https://www.nonwovens-industry.com/issues/2021-01-01/view_far-east-report/superabsorbent-polymer-makers-inthe-world-and-their-production-capacities/, (accessed 20 June 2024).
- 17 J. T. Ku, A. Y. Chen and E. I. Lan, *Microb. Cell Fact.*, 2022, **21**, 1–11.
- 18 United States Environmental Protection Agency, *Bisphenol A Action Plan*, 2010.

- 19 North America Polycarbonate (PC) Market Size & Share Analysis Industry Research Report Growth Trends, https://www.mordorintelligence.com/industry-reports/north-america-polycarbonate-pc-market, (accessed 20 June 2024).
- 20 Chemical Data Reporting under the Toxic Substances Control Act | US EPA, https://www.epa.gov/chemical-datareporting, (accessed 20 June 2024).
- 21 U.S. Oxygenate Plant Production of MTBE (Thousand Barrels), https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=M_EPOOXT_YOP_NUS_1&f=M, (accessed 20 June 2024).
- 22 U.S. Biofuels Plant Net Production of Other Oxygenates (Thousand Barrels), https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=M_EPOOXO_YNP_NUS_MBBL&f=M, (accessed 20 June 2024).
- 23 Benzene | NC DOL, https://www.labor.nc.gov/benzene, (accessed 20 June 2024).
- 24 Fast Facts and Frequently Asked Questions American Chemistry Council, https://www.americanchemistry.com/industry-groups/diisocyanates-dii/fast-facts-and-frequently-asked-questions, (accessed 20 June 2024).
- 25 Fast Facts and Frequently Asked Questions American Chemistry Council, https://www.americanchemistry.com/industry-groups/diisocyanates-dii/fast-facts-and-frequently-asked-questions, (accessed 20 June 2024).
- 26 Benzoic Acid The Chemical Company, https://thechemco.com/chemical/benzoic-acid/, (accessed 20 June 2024).
- 27 New methanol plants expected to increase industrial natural gas use through 2020 U.S. Energy Information Administration (EIA), https://www.eia.gov/todayinenergy/detail.php?id=38412, (accessed 23 June 2024).
- 28 Risk Evaluation for Formaldehyde | US EPA, https://www.epa.gov/assessing-and-managing-chemicals-undertsca/risk-evaluation-formaldehyde, (accessed 23 June 2024).
- 29 Fact Sheet: Methylene Chloride or Dichloromethane (DCM) | US EPA, https://www.epa.gov/assessing-andmanaging-chemicals-under-tsca/fact-sheet-methylene-chloride-or-dichloromethane-dcm-0, (accessed 23 June 2024).
- 30 United States Cellulose Acetate Market Size & Share Analysis Industry Research Report Growth Trends, https://www.mordorintelligence.com/industry-reports/united-states-cellulose-acetate-market, (accessed 23 June 2024).
- 31 United States Environmental Protection Agency, *Preliminary Information on Manufacturing, Processing, Distribution, Use, and Disposal: Carbon Tetrachloride*, 2017.
- 32 Ethanol explained supply of ethanol U.S. Energy Information Administration (EIA), https://www.eia.gov/energyexplained/biofuels/ethanol-supply.php, (accessed 23 June 2024).
- 33 FAOSTAT, https://www.fao.org/faostat/en/#data, (accessed 23 June 2024).

- 34 United States Environmental Protection Agency, *Anhydrous Ammonia Supply Chain Executive Summary*, 2022.
- 35 United States Geological Survey, 2019 Minerals Yearbook NITROGEN, 2024.
- 36 M. Khramov, V. Monical and N. Koryabkina, *Process of catalytic ammoxidation for hydrogen cyanide production,* WO2009002482A1, 2008.
- 37 United States Government Accountability Office, *Chemical Safety: Actions Needed to Improve Federal Oversight of Facilities with Ammonium Nitrate*, 2014.
- 38 United States Environmental Protection Agency, *Chlorine Supply Chain Executive Summary*, 2022.
- 39 S. T. Hobson, R. A. Richieri and M. H. Parseghian, *Toxicol. Mech. Methods*, 2021, **31**, 293–307.
- 40 United States Environmental Protection Agency, Sodium Hypochlorite Supply Chain Executive Summary, 2022.
- 41 United States Environmental Protection Agency, *Calcium Hypochlorite Supply Chain Executive Summary*, 2022.
- 42 United States Geological Survey, *Mineral Commodity Summaries: Titanium and Titanium Dioxide*, 2023.
- 43 United States Environmental Protection Agency, *Sodium Hydroxide Supply Chain Profile Executive Summary*, 2022.
- 44 R. Whitfield, F. Brown and L. Wood, *The Economic Benefits of Sodium Hydroxide Chemistry in the Production of Organic Chemicals in the United States and Canada*, 2017.
- 45 United States Geological Survey, *Mineral Commodity Summaries: Bauxite and Alumina*, 2023.
- 46 United States Geological Survey, *Mineral Commodity Summaries: Aluminum*, 2023.
- 47 United States Environmental Protection Agency, *Aluminum Sulfate Supply Chain Executive Summary*, 2022.
- 48 United States Environmental Protection Agency, *Sulfuric Acid Supply Chain Executive Summary*, 2022.
- 49 United States Geological Survey, *Mineral Commodity Summaries: Sulfur*, 2023.
- 50 United States Geological Survey, *Mineral Commodity Summaries: Phosphate Rock*, 2023.
- 51 United States Geological Survey, *Mineral Commodity Summaries: Soda Ash*, 2023.
- 52 United States Environmental Protection Agency, Sodium Carbonate Supply Chain Executive Summary, 2022.
- 53 M. D'Antonio, N. Hildt, Y. Patil, S. Moray, T. Shields and O. Sylvania, *Energy Efficiency Opportunities in the Glass Manufacturing Industry*, 2008.
- 54 United States Department of Energy, *Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in the Manufacturing of Glass*, 2017.
- 55 G. Avery and A. Carpenter, Supply Chain Energy and Greenhouse Gas Analysis Using the Materials Flows through Industry (MFI) Tool: Examination of Decarbonization Technology Scenarios for the U.S. Glass Manufacturing Sector, 2023.

- 56 United States Environmental Protection Agency, Sodium Silicate Supply Chain Executive Summary, 2022.
- 57 United States Environmental Protection Agency, *Silica Supply Chain Executive Summary*, 2022.
- 58 National Overview: Facts and Figures on Materials, Wastes and Recycling | US EPA, https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials, (accessed 22 November 2021).
- A. Angelidis, L. Crompton, T. Misselbrook, T. Yan, C. K. Reynolds and S. Stergiadis, *Agric. Ecosyst. Environ.*, 2019, 280, 1–15.
- 60 United States Environmental Protection Agency, *Antifreeze Recycling: Best Environmental Practices for Auto Repair* and Fleet Maintenance, 1999.
- 61 United States Environmental Protection Agency, *Stormwater Best Management Practice Developing a Used Oil Recycling Program Minimum Measure*, 2021.
- A. Isa, N. Nosbi, M. Che Ismail, H. Md Akil, W. F. F. Wan Ali and M. F. Omar, *Materials*, 2022, **15**, 4991.
- 63 J. Zhang, V. S. Chevali, H. Wang and C. H. Wang, *Compos. B Eng.*, 2020, **193**, 108053.
- 64 E. Furimsky, *Catal. Today*, 1996, **30**, 223–286.
- 5 T. E. Novotny and E. Slaughter, *Curr. Environ. Health Rep.*, 2014, **1**, 208–216.
- 66 U.S. Wastewater Treatment Factsheet | Center for Sustainable Systems, https://css.umich.edu/us-wastewatertreatment-factsheet, (accessed 20 June 2024).
- 67 Nutrients from septic systems can impact well and surface water Water Quality, https://www.canr.msu.edu/news/nutrients-from-septic-systems-can-impact-well-and-surface-water, (accessed 20 June 2024).
- L. Lassaletta, G. Billen, B. Grizzetti, J. Anglade and J. Garnier, *Environ. Res. Lett.*, 2014, **9**, 105011.
- 69 B. Pan, S. K. Lam, A. Mosier, Y. Luo and D. Chen, *Agric. Ecosyst. Environ.*, 2016, 232, 283–289.
- 70 United States Environmental Protection Agency, 2019 Wasted Food Report: Estimates of generation and management of wasted food in the United States in 2019, 2023.
- A. Milbrandt, K. Coney, A. Badgett and G. T. Beckham, *Resour. Conserv. Recycl.*, 2022, **183**, 106363.
- Avery Dennison, *The Missing Billions: The real cost of supply chain waste*, 2022.
- 73 Toxics Release Inventory (TRI) Program | US EPA, https://www.epa.gov/toxics-release-inventory-tri-program, (accessed 18 January 2024).
- F. Matebese, A. K. Mosai, H. Tutu and Z. R. Tshentu, *Heliyon*, 2024, **10**, e24730.
- 75 United States Environmental Protection Agency, *Quantifying the Disposal of Post-Consumer Architectural Paint*, 2007.

- 76 Paint Products Stewardship Initiative | US EPA, https://www.epa.gov/evaluate/paint-products-stewardship-initiative, (accessed 20 June 2024).
- A. Milbrandt, J. Zuboy, K. Coney and A. Badgett, *Waste Manag. Bulletin*, 2024, **2**, 21–28.
- 78 F. Maggi, F. H. M. Tang and F. N. Tubiello, *Nature*, 2023, **620**, 1013–1017.
- 79 Summary of Refrigerant Reclamation Trends | US EPA, https://www.epa.gov/section608/summary-refrigerantreclamation-trends, (accessed 20 June 2024).
- 80 Nondurable Goods: Product-Specific Data | US EPA, https://www.epa.gov/facts-and-figures-about-materials-wasteand-recycling/nondurable-goods-product-specific-data#DisposableDiapers, (accessed 20 June 2024).
- 81 C. D. Westbroek, J. Bitting, M. Craglia, J. M. C. Azevedo and J. M. Cullen, J. Ind. Ecol., 2021, 25, 333–343.
- 82 United States 2030 Food Loss and Waste Reduction Goal | US EPA, https://www.epa.gov/sustainable-managementfood/united-states-2030-food-loss-and-waste-reduction-goal, (accessed 19 June 2024).
- U.S. National Recycling Goal | US EPA, https://www.epa.gov/circulareconomy/us-national-recycling-goal, (accessed
 19 June 2024).
- 84 Zero Waste Europe and Eunomia, *How circular is glass?*, 2022.
- T. Uekert, A. Singh, J. S. DesVeaux, T. Ghosh, A. Bhatt, G. Yadav, S. Afzal, J. Walzberg, K. M. Knauer, S. R. Nicholson, G. T. Beckham and A. C. Carpenter, ACS Sustain. Chem. Eng., 2023, 11, 965–978.
- G. Tonsi, C. Maesani, S. Alini, M. A. Ortenzi and C. Pirola, *Chem. Eng. Trans.*, 2023, **100**, 727–732.
- 87 PaintCare, Colorado Paint Stewardship Program 2018 Annual Report, 2019.
- C. Liang, U. R. Gracida-Alvarez, E. T. Gallant, P. A. Gillis, Y. A. Marques, G. P. Abramo, T. R. Hawkins and J. B. Dunn, *Environ. Sci. Technol.*, 2021, 55, 14215–14224.
- G. Rossignolo, G. Malucelli and A. Lorenzetti, *Green Chem.*, 2024, **26**, 1132–1152.