Electronic Supplementary Information (ESI)

for the

Synthesis of an 8-membered oxygen-containing benzofused heterocycle using flow technologies

Bernice M. Currie,^a Nicole C. Neyt-Galetti,^a Tanya Olivier,^a Petra van der Merwe,^a Lerato S. Dibokwane,^a A. Michelle Reinhardt,^a Lorinda van Wyk,^a Jenny-Lee Panayides^b and Darren L. Riley^{a*}

^{a.}Department Chemistry, University of Pretoria, Pretoria, 0028, South Africa; ^{b.}Pharmaceutical Technologies, Chemicals cluster, CSIR, Pretoria campus, Pretoria, 0001, South Africa; ^{c.}Correspondence: Darren.riley@up.ac.za; Tel.: +2712-420-3097

Table of contents

1.	Expe	rimental	3
	1.1	General experimental detail	3
	1.2	Flow reactors and equipment	3
	1.3	Characterisation and purification	4
	1.4	Nomenclature	4
	1.5	Overall percentage yield and time calculations	5
	1.6	Reactor setup for each step	5
2.	Addi	tional data related to main article	7
	2.1	Phenolic allylation using potassium carbonate	7
	2.2	Claisen rearrangement using DMF	7
	2.3	Iso-propyl protection using potassium hydroxide in aqueous methanol	8
	2.4	Aldehyde reduction using polymer supported sodium borohydride	8
	2.5	Second Allylation design of experiment data	9
	2.6	Ring closing metathesis design of experiment data1	2
3.	Synt	nesis experimental1	4
	3.1	Isovanillin (Start Material)1	4

	3.2	Phenolic allylation:	. 14
	3.3	Claisen Rearrangement:	. 16
	3.4	Iso-propyl protection:	. 17
	3.5	Aldehyde Reduction:	. 19
	3.6	Second Allylation:	. 21
	3.7	Ring closing metathesis:	. 23
4.	HPL	C Method Information	. 25
	4.1	General procedure for preparing concentrations for standard curve	. 25
	4.2	Example of dilution procedure for experiments	. 25
	4.3	HPLC analysis for the phenolic allylation	. 26
	4.4	HPLC analysis for the Claisen rearrangement and Iso-propyl protection	. 28
	4.5	HPLC analysis for the aldehyde reduction	. 31
	4.6	HPLC analysis for the second allylation	. 34
	4.7	HPLC analysis for the RCM	. 37
5.	Char	acterization data	. 41
	5.1	Nuclear magnetic resonance spectra	. 41
	5.2	Fourier transform infrared specta	. 51
	5.3	Mass spectrometry spectra	. 54
6.	Refe	rences	. 57

1. Experimental

1.1 <u>General experimental detail</u>

All batch reactions were carried out using traditional chemistry methods, glassware and apparatus found in a standard synthetic laboratory. Prior to use, all glassware was oven- or flame-dried, and specified reactions were carried out under an inert environment using either argon or nitrogen gas. Under an inert environment (nitrogen), certain drying agents were used to distill solvents. Toluene was distilled from sodium, dimethylformamide was distilled using molecular sieves (type 4A molecular sieves), acetonitrile and ethyl acetate were distilled using calcium hydride, and tetrahydrofuran was distilled using sodium with benzophenone added as an indicator.

All starting materials and solvents were purchased from fine chemical vendors and commercial sources and used without purification. The removal of solvent was performed either with the use of evaporation under a flowing stream of compressed air, or by removal under reduced pressure (approximately 20 mmHg) using a standard Heidolph rotary evaporator at temperatures between 40 °C and 90 °C, depending on solvent identity.

1.2 Flow reactors and equipment

All flow reactors and specifications are indicated in each experimental description, for convenience a general description is provided below:

- 1. Flow reactors:
 - a. Uniqsis[™] Binary Pump Module (BPM) reactor equipped with 10 mL HPLC pump heads
 - b. Vapourtec[™] E-series easy-Medchem 3-pump peristaltic flow reactor equipped with blue pump tubing compatible with the chosen solvents.
 - c. Both reactors were fitted with standard 1/16" outer diameter and 1.0 mm inner diameter or 1/8" outer diameter and 1.5 mm inner diameter PTFE or SS tubing.
- 2. Coil reactors:
 - a. PTFE/PFA coil reactors had a maximum operating temperature of 150 °C and maximum pressure of 362-psi (25 bar) with volumes of 10 or 14 mL (1/16" outer diameter and 1.0 mm inner diameter) and 25 or 52 mL (1/8" outer diameter and 1.5 mm inner diameter).
 - b. Stainless-steel coil reactors had a maximum operating temperature of 260 °C and maximum pressure of 1000-psi (70 bar) with volumes of 2 and 20 mL (1/16" outer diameter and 1.0 mm inner diameter).
- 3. Packed bed reactors:
 - a. Omnifit[™] glass columns with enhanced PEEK adjustable end fittings and frits were used for packed bed column reactors. The columns had a maximum temperature of 150 °C and maximum pressure of 362-psi (25 bar) for the 10-mm inner diameter column reactor used.
 - b. The volume of the columns was determined by packing the column with immobilized reagent and cotton at the ends of the column and sealing it with an end-cap. The column was further packed by flowing through the selected solvent until no air bubbles were observed. The column volume was determined via the difference between the dry and wet weights divided by the density of the solvent.
- 4. The column and coil reactors were heated using a Uniqsis[™] HotCoil flow module that was fitted with the Uniqsis[™] HotColumn housing for the columns and has operational temperature ranges from ambient temperature to 260 °C. A Uniqsis[™] Polar Bear PLUS flow module was used for cooling with an operational temperature range of -40 °C to 150 °C.
- 5. Mixing chips:
 - a. A 20 mL Uniqsis[™] glass mixing chip was used for the ring-closing metathesis step with a maximum pressure rating of 10 bar.
- 6. Static mixer:
 - a. A 0.5 mL Vapourtec[™] static mixer was used with maximum pressure rating of 362-psi (25 bar).

7. Cartridge-based back-pressure regulators (BPR) were used with pressures set to 3 bar, 8 bar and 20 bar based on application and they were fitted with chemically resistant perfluoropolymer or Hastelloy components.

1.3 Characterisation and purification

- 1. Purification: Isolated yields were obtained by performing column chromatography using Merck silica gel 60 (0.040–0.063 mm) as the stationary phase. Mobile phase eluents are indicated in in each experimental description.
- 2. Nuclear Magnetic Radiance (NMR) were performed using a Bruker Ultrashield AVANCE-III spectrometer.
 - a. Splitting and multiplicity patterns are reported as singlet (s), doublet (d), doublet of doublet (dd), triplet (t), doublet of triplet (dt), quartet (q), multiplet (m) and broad singlet (bs). Coupling constants, J, were reported in Hertz (Hz). Chemical shifts δ, are reported in parts per million (ppm).
 - b. ¹H NMR were recorded at 300 and 400 MHz and chemical shifts were reported in the following order: chemical shift (δH, ppm); coupling constants (J, Hz); multiplicity; number or protons; proton assignment and all signals are referenced relative to deuterated chloroform (CDCl₃) at 7.27 ppm.
 - c. ¹³C NMR were recorded at 75MHz and 101 MHz and chemical shifts were reported in the following order: chemical shift (δ C, ppm); assignment and all signals are referenced relative to CDCl₃ at 77.36 ppm.
- 3. Thin Layer Chromatography (TLC)
 - a. Reaction progress was monitored by TLC or HPLC.
 - b. The reported retention factor (R_f) values were obtained from TLC analysis carried out on aluminium sheets pre-coated with silica (Merck Silica Gel 60 F254).
- 4. Fourier-transform Infrared (FTIR) spectroscopy was performed on a Bruker Alpha Platinum ATR spectrometer instrument.
 - a. Functional group signals were reported as wavenumbers (cm⁻¹) in the range of 400 3000 cm⁻¹.
- 5. High-performance liquid chromatography (HPLC) analysis was performed with an Agilent Infinity model and 1260-diode-array dector (DAD, G7115 A).
 - a. The injection volume was set to 2.0 μL and the column oven was set to 35 °C and DAD data were reported at wavelengths of 210 and 260 nm. An Agilent Poroshell 120 EC-C18 column (695975-902, 100 × 4.6 mm inner diameter, 2.7-μm particles) was used.
 - b. Samples were prepared using analytical grade acetonitrile to approximate concentrations relating to each method.
- 6. High-resolution mass spectra (HRMS) were recorded on a Waters Synapt G2 Mass Spectrometer at 70 eV and 200 mA.
 - a. For analysis, the instrument was operated under the following conditions: a capillary voltage of 2.8 kV (positive mode), a sampling cone (ramped from 20 V 40 V), an extraction cone of 4 V, a source temperature of 100 °C, a desolvation temperature of 200 °C, cone gas of 100 L.h⁻¹, desolvation gas of 500 L.h⁻¹, inert gas source: nitrogen.
 - b. Samples were prepared in analytical grade acetonitrile to an approximate concentration of 10 μ g.mL⁻¹.

1.4 <u>Nomenclature</u>

- 1. Compound were named according to IUPAC nomenclature and ChemDraw Ultra 12.0 was used for naming, and numbering was chosen as a matter of convenience.
- 2. NMR FID's were processed and analyzed using MestreNova 12.0

1.5 Overall percentage yield and time calculations

Table 1: Calculations of overall percentage yield and total reaction time for batch and flow conditions compared to literature values

Approach	Overall percentage yield	Total reaction time	
	(0.99×0.75×0.86×0.77×0.52)×100	20+64+18+12+20+2	
Van Otterlo and co-workers			
	= 25.6 %	=136 hours	
	(0.93×0.98×0.86×0.93×0.92×0.55) ×100	(15×3) +25 (20×2)	
Flow			
	= 36.9 %	=110 minutes	

1.6 <u>Reactor setup for each step</u>

Figure 1: Phenolic allylation (potassium carbonate approach) setup using Uniqsis Binary Pump

Figure 3: Protection (potassium hydroxide) setup using Uniqsis Binary Pump

Figure 2: Claisen rearrangement setup using Uniqsis Binary Pump

Figure 4: Reduction (polymer supported sodium borohydride approach) using Uniqsis Binary Pump

Figure 5: Reduction (sodium borohydride solution approach) using Vapourtec peristaltic pumps

Figure 7: Second allylation (sodium hydride approach using recycling approach) setup using Vapourtec peristaltic pumps

Figure 6: Second allylation (sodium hydride approach using standalone) using Vapourtec peristaltic pumps

Figure 8: RCM setup using Uniqsis Binary Pump

2. Additional data related to main article.

Scheme 1: Flow synthesis for the first allylation of isovanillin ${\bf 3}$ using potassium carbonate

Entry No	Reaction scale (g)	Solvent	Base	Allyl Bromide (equiv.)	Temperature (°C)	Residence time (min)	LC Conversion (%)
1 ^a	0.50	ACN	K ₂ CO ₃	2.5	80	30	0.0
2	0.25	ACN	DBU	2.5	80	30	67.0 ^b
3	0.23	DMF	K ₂ CO ₃	3.0	80	30	84.0 ^b
4	0.25	DMF	K ₂ CO ₃	2.5	80	30	60.0
5	0.25	DMF	K ₂ CO ₃	2.0	80	30	53.0
6	0.25	DMF	K ₂ CO ₃	1.5	80	30	51.0
7	0.25	DMF	K ₂ CO ₃	1.0	80	30	32.0
8	0.12	DMF	K ₂ CO ₃	3.0	80	30	79.0
9	0.12	DMF	K ₂ CO ₃	3.0	100	30	70.0
10	0.12	DMF	K ₂ CO ₃	3.0	80	45	89.0
11	0.12	DMF	K ₂ CO ₃	3.0	80	20	88.0
12 °	0.12	DMF	K ₂ CO ₃	3.0	100	20	92.0
13	0.12	DMF	K ₂ CO ₃	3.0	80	15	89.0

Table 2: Flow screens for the allylation of isovanillin **3** using potassium carbonate

^a Precipitation, reaction terminated, ^b Isolated yield, ^c Isolated yield (85%)

2.2 Claisen rearrangement using DMF

Table 3: Flow screens for the Claisen rearrangement when performed in DMF

Entry No	Reaction Scale (g)	Temperature (°C)	Residence time (min)	Isolated Yield (%)
1	0.1036	150	40	4
2	0.1025	180	40	13
3	0.1048	200	40	30
5	0.0999	240	40	49
6	0.1045	220	60	87*
7	0.0985	240	60	99
8	0.1065	240	50	94
9	0.0996	240	45	100

* Aborted due to reactor fouling

2.3 <u>Iso-propyl protection using potassium hydroxide in aqueous methanol</u>

	Reactio	<u>.</u>		2-	KOH	-	Residenc	LC
Entr	n scale	Solven	Con	Bromopropan	(equiv.	Temperatur	e time	Conversio
y NO	(mL)	t	с[м]	e (equiv.))	e (°C)	(min)	n (%)
1	2.13	MeOH	0.4	2.00	1.80	80	35	43.97
2	2.13	MeOH	0.4	2.00	1.80	80	30	36.51
3	2.13	MeOH	0.4	2.00	1.80	80	25	24.39
4	2.13	MeOH	0.4	2.00	1.80	80	20	25.28
5	2.13	MeOH	0.4	2.00	1.80	80	15	23.73
6	2.13	MeOH	0.4	2.00	1.80	80	10	18.32
7	2.13	MeOH	0.4	2.00	1.80	80	5	10.24
8	5.00	MeOH	0.2	2.50	1.80	120	25	68.53
9	5.00	MeOH	0.2	2.00	1.50	120	25	64.68
10	5.00	MeOH	0.2	2.50	1.80	120	20	63.56
11	5.00	MeOH	0.2	2.00	1.50	130	25	61.74
12	5.00	MeOH	0.2	2.50	1.80	100	20	59.21
13	5.00	MeOH	0.2	2.50	1.80	100	25	59.02
14	5.00	MeOH	0.4	2.50	1.80	120	25	58.85
15	5.00	MeOH	0.2	2.50	1.80	120	15	57.81
16	5.00	MeOH	0.2	2.50	2.50	120	30	55.05
17	5.00	MeOH	0.2	2.50	1.80	120	30	53.39
18	5.00	MeOH	0.4	2.00	1.50	120	25	51.54
19	5.00	MeOH	0.2	2.50	2.50	120	45	51.34
20	5.00	MeOH	0.4	2.00	1.50	130	25	49.35
21	5.00	MeOH	0.2	2.50	1.80	120	35	47.13
22	2.00	MeOH	0.2	1.00	1.80	120	25	44.54
23	2.00	MeOH	0.2	5.00	1.80	120	25	58.51
24	5.00	DMF	0.2	2.50	2.00	80	20	55.68
25	5.00	DMF	0.2	2.50	2.00	120	25	48.62
26	2.00	ACN	0.2	2.50	1.80	100	10	33.96
27	2.00	ACN	0.2	2.50	1.80	100	20	50.16
28	2.00	ACN	0.1	2.50	1.80	100	20	39.78
29	2.00	ACN	0.2	2.50	1.80	100	25	86.04
30	2.00	ACN	0.2	2.50	1.80	100	30	75.67
31	2.00	ACN	0.1	2.50	1.80	100	30	41.07

Table 4: Flow screens for the *Iso*-propyl protection using potassium hydroxide in aqueous methanol

2.4 Aldehyde reduction using polymer supported sodium borohydride

Scheme 2: Flow synthesis of the aldehyde reduction using polymer supported sodium borohydride

Entry No	Reaction scale (g)	Concentration [M]	Solvent	Residence Time (min)	LC Conversion (%)
1	0.15	0.20	MeOH	25	59.8
2	0.15	0.20	MeOH	30	69.5
3	0.15	0.80	MeOH	30	44.9
4	0.15	0.20	MeOH	60	68.0
5	0.15	0.80	MeOH	60	63.4
6	0.15	0.50	MeOH	45	80.4
7 ^a	0.15	0.50	MeOH	45	87.2

Table 5: Flow screens for the aldehyde reduction using polymer supported sodium borohydride

^a 68 % Isolated yield on 0.15-gram scale

Figure 9: Representation of a 3-D contour plot for aldehyde reduction flow experiments using polymer supported sodium borohydride

2.5 Second Allylation design of experiment data

Table 6: Second allylation screening approach-DoE Design-Full Factorial Screening

Screening approach-DoE Design-Full Factorial Screening							
Name	Abbreviation	Units	Туре	Use	Settings		
Sodium hydride equivalents	NaH	mg	Quantitative	Controlled	2.5–7.5		
Allyl Bromide equivalents	All	mL	Quantitative	Controlled	1.5–3.0		
Residence time	Res	Min	Quantitative	Controlled	10-20		
Cycling	Сус	time	Quantitative	Controlled	3-9		

Figure 10: Representation of replicate plot that demonstrates the variation between results within the experimental limits

Figure 11: Representation of a histogram that displays a normal distribution curve

Figure 12: Representation of a coefficient plot illustrating important terms and their interactions

The non-significant terms were:

Term	The interaction between
NaH* Res	sodium hydride and residence times
NaH*Cyc	sodium hydride and cycling of reaction
All*Res	equivalents of allyl bromide and residence time
Res*Cyc	residence time and cycling.

Figure 13: Representation of a summary of fit plot demonstrating the reliability and validity of the model

Figure 14: Representation of the observed vs. predicted plot for the results based on a line of best fit

Figure 15: Representation of a 3-D contour plot illustrating the optimal area for achieving high product conversions Table 7: Follow-up flow screens for the second allylation

Entry No	Reaction scale (g)	NaH equiv.	Allyl Bromide Equiv.	Residence Time (min)	Flow rate (ml/min)	Recycling	LC Conversion (%)
1	0.256	7.5	2.04	20	0.50	3	91.57
2	0.256	7.3	1.76	20	0.50	3	83.57

2.6 Ring closing metathesis design of experiment data

Screening approach-DoE Design-Full Factorial Screening								
Name	Abbreviation	Units	Туре	Use	Settings			
Solvent	Sol		Qualitative	Controlled	EtOAc; Toluene			
Catalyst	Cat		Qualitative	Controlled	GII; HGII			
Temperature	Temp	°C	Quantitative	Controlled	60-90			
Residence time	Res	min	Quantitative	Controlled	15-45			
Catalyst Loading	Cat	mol%	Quantitative	Constant	3			

Table 8: Ring-closing metathesis screening approach-DoE Design-Full Factorial Screening

Figure 16: Representation of replicate plot that demonstrates the variation between results within the experimental limit for the RCM step

Figure 18: Representation of a coefficient plot illustrating important terms and their interactions for the RCM step

Figure 19: Representation of a summary of fit plot demonstrating the reliability and validity of the model for the RCM step

Figure 20: Representation of a 3-D contour plot illustrating the optimal area for achieving high product conversions

3. Synthesis experimental

3.1 Isovanillin (Start Material)

Rf = 0.20 (25% ethyl acetate/hexane); ¹**H NMR (400 MHz, Chloroform-d)** δ 9.82 (s, 1H, H₋₉), 7.41 (m, 2H, H₃ and H₅), 6.96 (d, J = 8.7 Hz, 1H, H₆), 5.92 (s, 1H, H₈), 3.97 (s, 3H, H₇), 2.97 (DMSO₂, internal standard); **IR V**_{max}/cm⁻¹ 3184 (O-H stretch), 2843 (C-H stretch), 1668 (C=O stretch), 1574, 1508, 1243 (C-H bend), 1113 (C-O stretch), 825, 581.

3.2 <u>Phenolic allylation:</u>

3.2.1 Batch method using potassium carbonate

Isovanillin **3** (10.05 g, 66.07 mmol, 1.0 equiv.), and allyl bromide **2** (11.45 mL, 132.31 mmol, 2.0 equiv.) were added to a stirring solution of potassium carbonate (22.80 g, 164.94 mmol, 2.5 equiv.) in dimethylformamide (0.50 M, 132.00 mL). The reaction was heated to 60 °C and stirred for 20 hours under argon, then cooled to room temperature and filtered through a celite pad. The residue was then extracted with aqueous sodium hydroxide (3.00 M, 30 mL) and dichloromethane (3 × 30 mL). The organic layers were combined and dried with sodium sulphate, filtered and concentrated *in vacuo* to obtain 3-(allyloxy)-4-methoxybenzaldehyde **4**, as a dark yellow oil (10.43 g, 82 %). **Rf** = 0.53 (25% ethyl acetate/hexane); ¹**H NMR (300 MHz, Chloroform-d)** δ 9.70 (s, 1H, H₁₁), 7.37 – 7.23 (m, 2H, H₅, H₃), 6.85 (d, J = 8.2 Hz, 1H, H₆), 6.06 – 5.86 (ddt, J = 20.90, 14.22, 14.22 Hz, 1H, H₉), 5.31 (dd, J = 17.3, 1.6 Hz, 1H, H_{10b}), 5.18 (dd, J = 10.5, 1.4 Hz, 1H, H_{10a}), 4.52 (dt, J = 5.4, 1.5 Hz, 2H, H₈), 3.81 (s, 3H, H7). ¹³**C NMR (101 MHz, Chloroform-d)** δ 190.60 (C₁₁), 154.59 (C₁), 148.24 (C₂), 132.36 (C₉), 129.72 (C₄), 126.54 (C₅), 118.21 (C₁₀), 110.64 (C_{3/6})*, 110.52 (C_{3/6})*, 69.40 (C₈), 55.88 (C₇); **IR V_{max}/cm⁻¹** 2936 (C-H stretch), 2839 (C-H stretch), 1682 (C=O stretch), 1586, 1508, 1433 (C-H bend), 1261, 1127, 1012 (C-O stretch), 806, 636.; **HRMS m/z (ES+)** 193.1040 **[M+H]*** (C₁₁H₁₂O₃ requires 192.211 g.mol⁻¹). * Signals indistinguishable.

3.2.2 Batch method using potassium hydroxide solution

Potassium hydroxide (0.28 g, 4.99 mmol, 1.5 equiv.) was added to methanol: water (0.40 M, 8.21 mL, 70:30) and allowed to stir for 5 minutes. Isovanillin **3** (0.50 g, 3.23 mmol, 1.0 equiv.) and allyl bromide **2** (0.53 mL, 6.12 mmol,1.85 equiv.) was added to the solution and heated to 70 °C for 20 hours. After 20 hours the reaction was cooled to room temperature the solvent was removed *in vacuo*, and the residue was then extracted with aqueous sodium hydroxide (3.00 M, 30 mL) and dichloromethane (3 × 30 mL). The organic layers were combined and dried with sodium sulphate, filtered and concentrated *in vacuo* to obtain 3-(allyloxy)-4-methoxybenzaldehyde **4** as a dark yellow oil (0.49 g, 78 %).

3.2.3 Flow method using potassium carbonate

a. Preparation of stock solution using potassium carbonate

A 0.50 M stock solution of isovanillin **3** was prepared by the dissolution of **3** (0.23 g, 1.50 mmol, 1.0 equiv.) in dimethylformamide to a total volume of 3 mL and a 1.5 M stock solution of allyl bromide **2** was prepared by dissolution of **2** (0.39 mL, 4.50 mmol, 3.0 equiv.) in dimethylformamide to a total volume of 3 mL.

b. Uniqsis[™] binary pump reactor setup

Stock solutions were prepared as described above. The UniqsisTM binary pump reactor was plumbed with two UniqsisTM 10 mm columns and a 8 bar BPR (Scheme 2). The two columns were packed with crushed potassium carbonate (6.40 g, 46.34 mmol, 3.0 equiv.) and their volumes were determined as 3.20 mL and 3.59 mL respectively. A total flow rate of 0.227 mL.min⁻¹ was used to introduce 1.56 mL of each stock from the stock reservoir into the flow system. Dimethylformamide was used as a pushing solvent. The solutions were combined at the T-piece mixer and pumped through the packed columns held at 100 °C (T_R = 30 min). The solutions were collected, and solvent was removed and processed according to batch method to obtain 3-(allyloxy)-4-methoxybenzaldehyde **4** as a dark yellow oil (92 % from LC conversion).

3.2.4 Flow method using potassium hydroxide

a. Preparation of stock solution using potassium hydroxide

A 0.50 M stock solution of isovanillin **3** was prepared by dissolution of **3** (1.01 g, 6.64 mmol, 1.0 equiv.) and potassium hydroxide (0.66 g, 11.76 mmol, 1.8 equiv.) in methanol:water (13.14 mL of 70:30). A 1.00 M stock solution of allyl bromide **2** was prepared by dissolution of **2** (1.56 mL, 18.03 mmol, 2.0 equiv.) in methanol (16.40 mL).

b. Uniqsis[™] binary pump reactor setup and description

Stock solutions were prepared as described above. The UniqsisTM binary pump reactor was used with a 25.00 mL (1.5 mm inner diameter) coil (Scheme 2). A total flow rate of 1.67 mL.min⁻¹ was used to introduce 13.14 mL of each stock from the stock reservoir into the flow system. methanol:water (70:30) was used as a pushing solvent. The solutions were combined at the T-piece mixer and pumped through a static mixer at room temperature and a coil reactor held at 80 °C (T_R = 15 min) with an 8-bar BPR. The solutions were collected, and HPLC analysis was performed before solvent was removed processed according to batch method to obtain 3-(allyloxy)-4-methoxybenzaldehyde **4** as a dark yellow oil (1.12 g, 88%).

3.3 Claisen Rearrangement:

3.3.1 Batch method

3-(Allyloxy)-4-methoxybenzaldehyde **4** (2.02 g, 10.51 mmol, 1.0 equiv.) was dissolved in toluene (0.25 M, 42.00 mL) and was allowed to reflux for 72 hours at 120 °C. After 72 hours the reaction was cooled to room temperature the solvent was removed *in vacuo* to obtain 2-allyl-3-hydroxy-4-methoxybenzaldehyde **5** as a dark brown oil (6.9 % by qNMR analysis).

3.3.2 Flow method

a. Preparation of stock solution

A 1.00 M stock solution of 3-(allyloxy)-4-methoxybenzaldehyde **4** was prepared by dissolution of **4** (2.00 g, 10.04 mmol, 1.0 equiv.) in toluene to a total volume of 10 mL.

b. Uniqsis[™] binary pump reactor setup and description

Stock solutions were prepared as described above. The Uniqsis[™] binary pump reactor was used with a 20.00 mL (1.0 mm inner diameter) stainless steel coil and a 2.00 mL (1.0 mm inner diameter) stainless steel cooling coil (Scheme 3). A total flow rate of 0.67 mL.min⁻¹ was used to introduce 20.0 mL of the stock solution from the stock

reservoir into the flow system. Toluene was used as a pushing solvent. The solution was pumped through a stainless-steel coil reactor held at 240 °C ($T_R = 30 \text{ min}$) and a cooling coil held at 0 °C with an 20-bar BPR. The solution was collected, and the solvent was removed *in vacuo* to remove the toluene to obtain 2-allyl-3-hydroxy-4-methoxybenzaldehyde **5** as a dark brown oil (1.99 g, 99 %) **Rf** = 0.44 (25% ethyl acetate/hexane) ¹**H NMR (300 MHz, Chloroform-d)** δ 10.05 (s, 1H, H₁₁), 7.43 (d, J = 8.5 Hz, 1H, H₅), 6.87 (d, J = 8.5 Hz, 1H, H₆), 6.12 – 5.98 (ddt, J= 17.13, 16.08, 12.07 Hz, 1H, H₉), 5.90 (br s, 1H, H₁₂), 5.01 (dd, *J* = 6.2, 1.7 Hz, 1H, H_{10b}), 5.00 – 4.90 (dd, 1H, H_{10a}), 3.96 (s, 3H, H₇), 3.87 (dt, J = 6.0, 1.7 Hz, 2H, H₈). ¹³**C NMR (101 MHz, Chloroform-d)** δ 191.64 (C=O, C₁₁), 150.94 (C₁), 143.88 (C₂), 136.32 (C₉), 128.21 (C_{3/4})*, 127.61 (C_{3/4})*, 125.55 (C₅), 115.37 (C₁₀), 108.19 (C₆), 56.15 (C₇), 28.44 (C₈); **IR V_{max}/cm⁻¹** 3354 (O-H stretch), 2849 (C-H stretch), 1671 (C=O stretch), 1584, 1277(C-H bend), 1241, 1192, 1078 (C-O stretch), 790; **HRMS m/z (ES+)** 193.1040 **[M+H]**⁺ (C₁₁H₁₂O₃ requires 192.211 g.mol⁻¹). * Signals indistinguishable

3.4 <u>Iso-propyl protection:</u>

3.4.1 Batch method using potassium carbonate

2-Allyl-3-hydroxy-4-methoxybenzaldehyde **5** (9.02 g, 46.94 mmol, 1.0 equiv.) was added to a stirring solution of potassium carbonate (16.21 g, 117.29 mmol, 2.5 equiv.) and 2-bromopropane **6** (11.01 mL, 117.27 mmol, 2.5 equiv.) in dimethylformamide (0.50 M, 94.00 mL). The solution was stirred for 20 hours under argon atmosphere at 60 °C. After 20 hours the reaction was cooled to room temperature was filtered through a celite pad. The solvent was removed under a flow of compressed air, and the residue was then extracted with aqueous sodium hydroxide (3.00 M, 30 mL) and dichloromethane (3 × 30 mL). The organic layers were combined and dried with sodium sulphate, filtered and concentrated *in vacuo* to obtain 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7**, as a light brown oil (8.59 g, 78 %). **Rf** = 0.67 (25% ethyl acetate/hexane); ¹**H NMR (300 MHz, Chloroform-d)** δ 10.06 (s, 1H, H₁), 7.62 (d, *J* = 8.6 Hz, 1H, H₅), 6.89 (d, *J* = 8.6 Hz, 1H, H₆), 5.99 (ddt, *J* = 17.2, 10.2, 5.7 Hz, 1H, H₉), 5.00 (dd, *J* = 10.2, 1.7 Hz, 1H, H_{10b}), 4.89 (dd, *J* = 17.2, 1.8 Hz 1H, H_{10a}), 4.49 (sept, J = 6.2 Hz, 1H, H₁₂), 3.90 (s, 3H, H₇), 3.87 (dt, J = 5.7, 1.9 Hz, 2H, H₈), 1.27 (d, J = 6.2 Hz, 6H, H₁₃, H₁₄).¹³**C NMR (101 MHz, Chloroform-d)** δ 191.06 (C₁₁), 157.60 (C₁), 144.94 (C₂), 137.14 (C₉), 136.36 (C₃), 128.14 (C₄), 128.02 (C₅), 115.57 (C₁₀), 109.67 (C₆), 74.90 (C₁₂), 55.68 (C₇), 29.00 (C₈), 22.53 (C₁₃, C₁₄); **IR V_{max}/cm⁻¹** 2975, 2846, 2723 (C-H stretch), 1684 (C=O stretch), 1581, 1440 (C-H bend), 1275, 1077 (C-O stretch), 912, 808; **HRMS m/z (ES+)** 235.1351 **[M+H]*** (C₁₄H₁₈O₃ requires 234.29 g.mol⁻¹).

3.4.2 Flow method using potassium carbonate

a. Preparation of stock solution using potassium carbonate

A 0.40 M stock solution of 2-allyl-3-hydroxy-4-methoxybenzaldehyde **5** was prepared by the dissolution of **5** (4.07 g, 21.17 mmol, 1.0 equiv.) in dimethylformamide to a total volume of 50 mL, and a 1.00 M stock solution of 2-bromopropane **6** was prepared by dissolution of **6** (5.50 mL, 58.53 mmol, 2.5 equiv.) in dimethylformamide to a total volume of 50 mL.

b. Uniqsis[™] binary pump reactor setup and description

Stock solutions were prepared as described above. The UniqsisTM binary pump reactor was used with two UniqsisTM 10 mm columns and an 8 bar BPR (Scheme 4). The two columns were packed with crushed potassium carbonate (8.09 g, 58.52 mmol, 2.5 equiv.) and their total volume was determined to be 8.72 mL. A total flow rate of 0.436 mL.min⁻¹ was used to introduce 56.00 mL of each stock from the stock reservoir into the flow system. Dimethylformamide was used as a pushing solvent. The solutions were combined at the T-piece mixer and pumped through the packed columns held at 80 °C (T_R = 20 min).The solutions were collected, and solvent was removed and processed according to batch method to obtain 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7** as a light brown oil (4.37 g, 88%).

3.4.3 Batch method using potassium hydroxide

Potassium hydroxide (0.22 g, 3.92 mmol, 1.5 equiv.) was added to methanol: water (0.20 M, 13.00 mL, 70:30) and allowed to stir for 5 minutes. 2-Allyl-3-hydroxy-4-methoxybenzaldehyde **5** (0.50 g, 2.60 mmol, 1.0 equiv.) and 2-bromopropane **6** (0.42 mL, 4.77 mmol, 1.85 equiv.) was added to the solution and heated to 70 °C for 20 hours. After 20 hours the reaction was cooled to room temperature the solvent was removed *in vacuo*, and the residue was then extracted with aqueous sodium hydroxide (3.00 M, 30 mL) and dichloromethane (3 × 30 mL). The organic layers were combined and dried with sodium sulphate, filtered and concentrated *in vacuo* to obtain 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7**, as a light brown oil (0.37 g, 60 %). **Rf** = 0.67 (25% ethyl acetate/hexane)

3.4.4 Flow method using potassium hydroxide

a. Preparation of stock solution using potassium hydroxide

A 0.20 M stock solution of 2-allyl-3-hydroxy-4-methoxybenzaldehyde **5** was prepared by dissolution of **5** (0.20 g, 1.00 mmol, 1.0 equiv.) and potassium hydroxide (0.10 g, 1.80 mmol, 1.8 equiv.) in methanol:water (5.00 mL of 70:30). A 0.50 M stock solution of 2-bromopropane **6** was prepared by dissolution of **6** (0.23 mL, 2.50 mmol, 2.50 equiv.) in methanol (5.00 mL).

b. UniqsisTM binary pump reactor setup and description

Stock solutions were prepared as described above. The UniqsisTM binary pump reactor was used with a 25.00 mL (1.5 mm inner diameter) coil. A total flow rate of 1.25 mL.min⁻¹ was used to introduce 5.00 mL of each stock from the stock reservoir into the flow system. Methanol:water (70:30) was used as a pushing solvent. The solutions were combined at the T-piece mixer and pumped through a static mixer at room temperature and a coil reactor held at 120 °C (T_R = 25 min) with an 8-bar BPR. The solutions was collected, and HPLC analysis was performed before solvent was removed processed according to batch method to obtain 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7**as a light brown oil (69 %).

3.5 <u>Aldehyde Reduction:</u>

3.5.1 Batch method using sodium bis(2-methoxyethoxy)aluminum dihydride (Red-Al, 60% in toluene)

Red-Al (60% in toluene, 15.62 mL, 73.85 mmol, 2.5 equiv.) was added dropwise to a stirring solution of 2-allyl-3isopropoxy-4-methoxybenzaldehyde **7** (4.50 g, 19.21 mmol, 1.0 equiv.) in toluene (0.15 M, 128.00 mL) under argon at 15-20 °C. The solution was left for 20 hours under inert conditions while stirring. The reaction was quenched by adding 10% aqueous sodium hydroxide while stirring for 30 minutes. The solvent was removed *in vacuo*, and the residue was then extracted with water (30 mL) and dichloromethane (3 × 30 mL). The organic layers were combined and dried with magnesium sulphate, filtered and concentrated *in vacuo* to obtain (2-allyl-3-isopropoxy-4methoxyphenyl)methanol **8** as a dark yellow oil (3.47 g, 76 %). The method was repeated using the same conditions while varying the reducing agent and solvent. **Rf** = 0.46 (25% ethyl acetate/hexane); ¹**H NMR (300 MHz, Chloroform-d)** δ 7.03 (d, J = 8.4 Hz, 1H, H₅), 6.75 (d, J = 8.4 Hz, 1H, H₆), 5.95 (ddt, J = 17.1, 10.2, 5.8 Hz, 1H, H₉), 5.02 – 4.95 (dd, 1H, H_{10b}), 4.88 (dd, J=1.9 hz, 1H, H_{10a}), 4.55 (br s, 2H, H₁₁), 4.48 (sept, J = 6.2 Hz, 1H, H₁₂), 3.80 (s, 3H, H₇), 3.53 (dt, J = 5.9, 1.8 Hz, 2H, H₈), 2.22 (br s, 1H, H₁₅), 1.25 (d, J = 6.2 Hz, 6H, H₁₄ & H₁₃).¹³**C NMR (75 MHz, Chloroform-d)** δ 152.39 (C₁), 144.96 (C₂), 137.58 (C₉), 132.41 (C_{3/4})*, 132.12 (C_{3/4})*, 123.76 (C₅), 114.98 (C₁₀), 109.98 (C₆), 74.61, (C₁₂), 62.91 (C₁₁), 55.63, (C₇), 30.54 (C₈), 22.64 (C₁₄ & C₁₃); **IR V_{max}/cm⁻¹** 3380 (O-H stretch), 2973, 2934 (C-H stretch), 1601, 1485, 1435(C-H bend), 1267, 1081 (C-O stretch), 985, 911, 803; **HRMS m/z (ES+)** 219.1538 **[M-OH]**⁺ (C₁₄H₂₀O₃ requires 236.31 g.mol⁻¹).* Signals indistinguishable.

3.5.2 Flow method using polymer supported sodium borohydride

a. Preparation of stock solution

Stock solution of 0.50 M of 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7** was prepared by dissolution of **7** (0.15 g, 0.63 mmol, 1.0 equiv.) in methanol (1.25 mL).

b. Uniqsis[™] binary pump reactor setup and description

Stock solutions were prepared as described above. The UniqsisTM binary pump reactor was used with one UniqsisTM 10 mm column and an 8 bar BPR (Scheme 2 ESI). The column was packed with polymer supported sodium borohydride and its volumes was determined to be 4.00 mL. A total flow rate of 0.089 mL.min⁻¹ was used to introduce 1.28 mL of stock from the stock reservoir into the flow system. Methanol was used as a pushing solvent. The solutions were pumped through the packed column held at room temperature (T_R = 45 min).The solution was collected and HPLC analysis was performed before the solvent was removed *in vacuo* and processed according to batch method to obtain (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol **8** as a dark yellow oil (0.11 g, 68 %).

3.5.3 Flow method using sodium borohydride solution

a. Preparation of stock solution

Stock solution of 0.50 M of 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7** was prepared by dissolution of **7** (2.94 g, 12.53 mmol, 1.0 equiv.) in IPA to a total volume of 25 mL and stock solution of 1.0 M of NaBH₄ was prepared by dissolution of NaBH₄ (0.95 g, 25.06 mmol, 2.0 equiv.) in water to a total volume of 25 mL.

b. Vapourtec[™] peristaltic pump reactor setup and description

Stock solutions were prepared as described above. The VapourtecTM easy-MedChem E-series peristaltic pump reactor was used with a 3 bar BPR (Scheme 5). A total flow rate of 1.25 mL.min⁻¹ was used to introduce 25.00 mL of each stock from the stock reservoir into the flow system. IPA was used as a pushing solvent. The solutions were combined at the T-piece mixer and pumped through a 0.50 mL static mixer at room temperature and a coil reactor held at room temperature (T_R = 20 min). The solution was collected in 5.00 mL saturated NaHCO₃ and water and HPLC analysis was performed before solvent was removed *in vacuo* and processed according to batch method to obtain(2-allyl-3-isopropoxy-4-methoxyphenyl)methanol **8** as a dark yellow oil (2.53 g, 85 %).

3.6 Second Allylation:

3.6.1 Batch Procedure

(2-Allyl-3-isopropoxy-4-methoxyphenyl)methanol **8** (1.70 g, 7.21 mol, 1.0 equiv.) was added to a solution of sodium hydride pre-washed with hexane to remove mineral oil (0.72 g, 30.03 mmol, 2.5 equiv., 60% dispersion in mineral oil) and tetrahydrofuran (0.15 M, 50.00 mL) under argon atmosphere. Allyl bromide **2** (1.56 mL, 18.02 mmol, 2.5 equiv.) was added dropwise to the reaction mixture at 15-20 °C and left to reflux for 20 hours while stirring. The reaction was quenched with 10% sodium hydroxide while continuously stirring for 30 minutes. The solvent was removed *in vacuo* and the residue was then extracted with water (30 mL) and dichloromethane (3 × 30 mL). The organic layers were combined and dried with magnesium sulphate, filtered and concentrated *in vacuo* to obtain 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene **9** as a light yellow oil (1.69 g, 85%). **Rf** = 0.88 (25% ethyl acetate/hexane); ¹**H NMR (300 MHz, Chloroform-d)** δ 7.03 (d, J = 8.3 Hz, 1H, H₅), 6.74 (d, J = 8.4 Hz, 1H, H₆), 5.94 (ddt, J = 12.80, 8.56, 5.86 Hz, 1H, H₉), 5.91 (ddt, J = 9.86, 7.53, 6.30 Hz, 1H, H₁₆), 5.35 – 5.23 (dd, 1H, H_{17b}), 5.28 (dd, J = 17.2, 1.7 Hz, 1H, H_{17a}), 5.18 (dd, J = 10.2, 1.4 Hz, 1H, H_{10a}), 4.96 (dd, J = 9.2 Hz, 1H, H_{10b}), 4.58 –

4.38 (sept, 1H, H₁₂), 4.44 (s, 2H, H₁₁), 3.99 (dt, J = 5.7, 1.4 Hz, 2H, H₁₅), 3.80 (s, 3H, H₇), 3.54 (dt, J = 6.0, 1.8 Hz, 2H, H₈), 1.26 (d, J = 6.2 Hz, 6H, H₁₃ & H₁₄).¹³C NMR (75 MHz, Chloroform-d) δ 152.54 (C₁), 145.10 (C₂), 136.91 (C₉), 134.97 (C₁₆), 132.83 (C₃), 129.57 (C₄), 124.42 (C₅), 116.94 (C₁₇), 114.77 (C₁₀), 109.70 (C₆), 74.43 (C₁₂), 71.06 (C₁₁), 70.08 (C₁₅), 55.54 (C₇), 30.63 (C₈), 22.62 (C₁₄ & C₁₃); **IR** V_{max}/cm⁻¹ 2971 (C-H stretch), 2927, 2855, 1486, 1437 (C-H bend), 1270, 1080 (C-O stretch), 913, 803; **HRMS m/z (ES+)** 276.1749 **[M+H]⁺** (C₁₇H₂₄O₃ requires 276.3739 g.mol⁻¹).

3.6.2 Flow method

a. Preparation of stock solution

Stock solution of 0.2 M of (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol **8** was prepared by dissolution of **8** (0.26 g, 1.10 mmol, 1.0 equiv.), sodium hydride (0.33 g, 13.57 mmol, 7.5 equiv., 60% dispersion in mineral oil) and allyl bromide **2** (0.28 mL, 3.26 mmol, 3.0 equiv.) in tetrahydrofuran to a total volume of 5.5 mL with continuous stirring under nitrogen atmosphere.

b. Vaportec peristaltic reactor setup and description

Stock solutions were prepared as described above. The VapourtecTM easy-MedChem E-series peristaltic pump reactor was used with 1.5 mm inner diameter tubing for the sodium hydride slurry and using a 10.00 mL coil reactor. One of the peristaltic pumps was used as a BPR and the pressure was adjusted to 10 bar (Scheme 6). The reactor was purged with dried tetrahydrofuran. A total flow rate of 0.50 mL.min⁻¹ was used to introduce 5.43 mL of stock from the stock reservoir into the flow system. Tetrahydrofuran was used as a pushing solvent. The solutions were mixed at the static mixer at room temperature and was pumped through a coil reactor held at 100 °C (T_R = 20 min).The solution was collected in the reagent reservoir and were allowed to cycle through the reaction path for the required number of cycles before collection into 2.00 mL water. HPLC analysis was performed before solvent was removed *in vacuo* and processed according to batch method to obtain 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene **9** as a light yellow oil (0.21 g, 69%).

3.7 Ring closing metathesis:

3.7.1 Batch Procedure

To a solution of 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene **9** (0.28 g, 1.00 mmol, 1.0 equiv.) in degassed toluene (0.012 M, 83.00 mL) was added Grubbs II catalyst (0.042 g, 0.050 mmol, 0.05 equiv.) and the reaction was stirred at 60 °C under an argon atmosphere for 2 hours. The solution was cooled, and the solvent was removed *in vacuo*. The reaction mixture was purified via column chromatography (10 % ethyl acetate/Hexane)

to obtain a clear oil of (*Z*)-7-isopropoxy-8-methoxy-3,6-dihydro-1*H*-benzo[*c*]oxocine **1** as a colorless oil (0.012g, 46 %) **Rf** = 0.70 (10% ethyl acetate/hexane); ¹**H NMR (300 MHz, Chloroform-d)** δ 6.82 (d, J = 8.3 Hz, 1H, H₅), 6.71 (d, J = 8.3 Hz, 1H, H₆), 6.03 – 5.87 (m, 1H, H₉), 5.68 – 5.61 (dt, J = 10.5, 5.1 Hz, 1H, H₁₆), 4.80 (s, 2H, H₁₁), 4.42 (sept, J = 6.2 Hz, 1H, H₁₂), 4.15 (d, J = 5.0 Hz, 2H, H₁₅), 3.82 (s, 3H, H₇), 3.74 (d, J = 7.2 Hz, 2H, H₈), 1.29 (d, J = 6.1 Hz, 6H, H₁₃ & H₁₄) ; ¹³**C NMR (75 MHz, Chloroform-d)** δ 152.80 (C₁), 144.34 (C₂), 133.59 (C₃), 131.72 (C₄), 130.07 (C₉)*, 127.91 (C₁₆)*, 123.69 (C₅), 109.51 (C₆), 74.81 (C₁₂), 72.18 (C₁₁), 66.27 (C₁₅), 55.75 (C₇), 29.71 (C₈), 22.58 (C₁₄ & C₁₃); **HRMS m/z (ES+)** 249.14 **[M+H]**⁺ (C₁₅H₂₀O₃ requires 248.14 g.mol⁻¹). * Signals indistinguishable.

3.7.2 Flow procedure

a. Preparation of stock solution

0.08 M in EtOAc/Toluene 2.4 mM in EtOAc/Toluene

Stock solution of 0.08 M of 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene **9** was prepared by dissolution of **9** (0.11 g, 0.4 mmol, 1.0 equiv.) in toluene/ethyl acetate to a total volume of 5 mL and a 2.4 mM stock solution of catalysts (3 mol %) in toluene/ethyl acetate to a total volume of 5 mL.

b. Uniqsis[™] binary pump reactor setup and description

Stock solutions were prepared as described above. The UniqsisTM binary pump reactor was used with 2.00 mL sample loops. A total flow rate of $0.44 - 1.33 \text{ mL.min}^{-1}$ was used to inject 2.00 mL of each stock from the sample loops into the flow system. Toluene/ethyl acetate was used as a pushing solvent. The solutions were pumped through a 20.00 mL glass mixing chip reactor held between 60 - 90 °C (T_R = 15 - 45 min) using a 4 bar BPR (Scheme 7).The solution was collected in the reagent reservoir and HPLC analysis was performed before solvent was removed *in vacuo* and processed according to batch method to obtain (*Z*)-7-isopropoxy-8-methoxy-3,6-dihydro-1*H*-benzo[*c*]oxocine **1** as a colorless oil.

Analysis of compound 4, 5, 7, 8, 9 and 1 corresponded with literature results obtained van Otterlo and coworkers.¹

4. HPLC Method Information

4.1 General procedure for preparing concentrations for standard curve

Method 1: Purified compound **X** (100 mg) was weighed and dissolved in 10mL acetonitrile (10 mg.mL⁻¹). From this 2 mL was diluted to 10 mL (2 mg.mL⁻¹). A 0.2 mg.mL⁻¹ stock was prepared by adding 1mL of the 2 mg.mL⁻¹ stock solution and diluting to 10 mL. From these stock solutions several concentrations were prepared in triplicate 10 ppm, 15 ppm, 20 ppm, 25 ppm, 30 ppm, 35 ppm and 40 ppm.

Method 2: Purified compound **X** (100 mg) was weighed and dissolved in 10 mL acetonitrile (10 mg.mL-1). From this 2 mL was diluted to 10 mL (2 mg.mL-1). A 0.2 mg.mL-1 stock was prepared by adding 1 mL of the 2 mg.mL-1 stock solution and diluting to 10 mL. From these stock solutions several concentrations were prepared in triplicate 8 ppm, 12 ppm, 16 ppm, 20 ppm, 24 ppm, 28 ppm, 32 ppm, 36 ppm and 40 ppm.

4.2 Example of dilution procedure for experiments

Each reaction was collected and diluted to a volume of 30 mL with acetonitrile, resulting in a concentration of 5 mg.mL⁻¹. From here, 1 mL was diluted with acetonitrile to a concentration of 0.5 mg.mL⁻¹ in a 10 mL volumetric flask. To obtain 25 ppm, a dilution factor of 200, a 50 μ L aliquot of this solution was added to an LC vial and diluted to 1 mL. In addition, a 60 μ L aliquot from this solution was added to an LC vial and diluted to 1 mL to give 30 ppm, which equated to a dilution factor of 167 and was used for validation.

Conversions were obtained by dividing the sample's area by the equation deduced from the standard curve- in this case, for example the allylated product 4, which was 3.3528. After that, the value was multiplied by the dilution factor, which for 25 ppm was 200. To convert from ppm to mg.mL⁻¹, this amount was then divided by 1000. The value is then multiplied by the volume of the collection, in this example 30 mL, to obtain the amount obtained in grams. Finally, the conversion is calculated by dividing the number of grams obtained by the number of grams theoretically expected.

Letter	Description
A	Starting material mass (Isovanillin 3 , 95 %)
В	Concentration in 30 mL sample
С	Concentration in 10 mL sample
D	Concentration in 1 mL LC vail sample (50 µL)
E	Dilution factor
F	Area of product
G	Area/ Equation of product
Н	G × Dilution factor
I	H / 1000
J	I × Collected volume
К	% Conversion

Table 9: Example of descriptions and letters used for calculation of optimization reactions for 3-(allyloxy)-4-methoxybenzaldehyde 4

4.3 HPLC analysis for the phenolic allylation

Quat. Pump						
Flow rate	1.00 mL.min ⁻¹					

Table 10: HPLC method information for optimization of 3-(allyloxy)-4-methoxybenzaldehyde 4

	Quat. Pump						
Flow rate	1.00 mL.min ⁻¹						
Maximum pressure	400 bar						
Stop time	5 minutes						
Oven Temperature	35 °C						
Injection Volume	2.00 uL						
Channel	Name	Percentage (%)					
А	Organic (50 % MeOH/ACN)	60					
В	Aqueous 10 mM Phosphate buffer (90 % H ₂ O/Organic)	40					
Signals	Name	Retention time (min)					
260 nm	Isovanillin 3	1.131					
260 nm	3-(allyloxy)-4-methoxybenzaldehyde 4	1.826					
260 nm	Anisole 10 (Internal standard)	2.241					

4.3.1 Raw data for standard curve

Table 11: Raw data for triplicates at each concentration for standard curve for 3-(allyloxy)-4-methoxybenzaldehyde 4

	Isova	anillin 3		Produc methox	t: 3-(Allylo ybenzalde	oxy)-4- hyde 4	Anisole 10 (Internal Standard)			
PPM	Retention time	Area (mAU*S)	Average Area	Retention time	Area (mAU*S)	Average Area	Retention time	Area (mAU*S)	Average Area	
	1.129	63.9542		1.828	34.8695		2.252	31.3119		
10	1.131	66.9859	65.1178	1.826	34.7801	35.0602	2.254	31.0402	30.8464	
	1.129	64.4133		1.815	35.5309		2.213	30.187		
15	1.128	96.1887	97.2439	1.821	53.9597	54.0119	2.244	30.3435	30.5361	

	1.129	96.6802		1.822	53.1735		2.249	30.4251	
	1.129	98.8628		1.812	54.9025		2.211	30.8397	
	1.128	130.27	400 447	1.819	71.2548		2.244	31.2041	
20	1.131	130.545	130.447	1.824	71.6022	72.0068	2.22	30.6329	30.9331
	1.133	130.528		1.82	73.1634		2.22	30.9624	
	1.13	162.174		1.825	87.0507		2.249	30.4089	
25	1.132	160.362	157.382	1.826	88.4288	88.23	2.258	30.5315	30.3933
	1.131	149.609		1.816	89.2103		2.218	30.2395	
	1.129	194.908		1.823	108.553		2.25	30.6887	
30	1.129	191.528	192.485	1.82	107.895	108.238	2.249	30.8783	30.7177
	1.13	191.019		1.815	108.266		2.215	30.5861	
	1.128	223.121		1.818	120.957		2.243	30.8532	
35	1.13	221.503	222.839	1.82	128.003	124.936	2.215	30.5713	30.804
	1.131	223.894		1.823	125.848		2.247	30.9874	
	1.13	257.647		1.823	143.579		2.25	30.766	
40	1.13	254	258.546	1.82	142.599	142.37	2.213	31.1933	30.7488
	1.159	263.991		1.92	140.933		2.349	30.2872	

4.3.2 Standard curve Graph

Figure 21: Standard curve for Isovanillin 3 and 3-(allyloxy)-4-methoxybenzaldehyde 4 at 260 nm

4.3.3 Example HPLC Chromatograms

Figure 22: Chromatogram for standard curve at 260 nm at 25 ppm for isovanillin **3** (1.130 min), 3-(allyloxy)-4-methoxybenzaldehyde **4** (1.825 min), and Anisole **10** (2.249 min)

Figure 23: Chromatogram of large-scale allylation reaction using potassium hydroxide at 25 ppm

4.3.4 Experiment calculations

Exp No	А	В	С	D	Е	F	G	н	I	J	к
1	124.8	5.26	0.53	26.28	200	69.26	20.66	4131.26	4.13	123.94	78.61
2	124.8	5.26	0.53	26.28	200	61.75	18.42	3683.23	3.68	110.50	70.09
3	124.9	5.26	0.53	26.30	200	78.50	23.41	4682.81	4.68	140.48	89.03
4	124.7	5.25	0.53	26.26	200	77.35	23.07	4614.26	4.61	138.43	87.87
5	124.7	5.25	0.53	26.26	200	80.79	24.10	4819.06	4.82	144.57	91.77
6	124.9	5.26	0.53	26.30	200	78.63	23.45	4690.58	4.69	140.72	89.18

Table 12: Calculations for experiments conducted for allylation using potassium carbonate

Table 13: Calculations for experiments conducted for allylation using potassium hydroxide

Exp No	A	в	с	D	Е	F	G	н	I	J	к
1	159.6	5.04	0.50	25.20	200	57.41	17.12	3424.61	3.42	136.98	67.95
2	159.6	5.04	0.50	25.20	200	63.78	19.02	3804.31	3.80	152.17	75.49
3	159.5	5.04	0.50	25.19	200	65.87	19.65	3929.32	3.93	157.17	77.99
4	159.5	5.04	0.50	25.19	200	66.22	19.75	3949.91	3.95	158.00	78.40
5	159.5	5.04	0.50	25.19	200	64.61	19.27	3854.25	3.85	154.17	76.50
6	161.6	5.10	0.51	25.52	200	65.77	19.62	3923.48	3.92	156.94	76.88
7	161.6	5.10	0.51	25.52	200	68.72	20.50	4099.49	4.10	163.98	80.33
8	161.6	5.10	0.51	25.52	200	67.85	20.24	4047.25	4.05	161.89	79.31
9	161.6	5.10	0.51	25.52	200	66.14	19.73	3945.32	3.95	157.81	77.31
10	160.5	5.07	0.51	25.34	200	66.38	19.80	3959.61	3.96	158.38	78.12
11	160.5	5.07	0.51	25.34	200	68.06	20.30	4059.68	4.06	162.39	80.09

4.4 HPLC analysis for the Claisen rearrangement and Iso-propyl protection

Table 14: HPLC method information for optimization of 2-allyl-3-hydroxy-4-methoxybenzaldehyde $\mathbf{5}$ and 2-allyl-3-isopropoxy-4-methoxybenzaldehyde $\mathbf{7}$

Quat. Pump										
Flow rate	1.00 m	L.min ⁻¹								
Maximum pressure	400 bar									
Stop time	6 minutes									
Oven Temperature	35 °C									
Injection Volume	2.00) uL								
Channel	Name	Percentage (%)								
А	Organic (50 % MeOH/ACN)	60								
В	Aqueous 10 mM Phosphate buffer (90 % H₂O/Organic)	40								

Signals	Name	Retention time (min)
220 nm	2-allyl-3-hydroxy-4- methoxybenzaldehyde 5	1.437
220 nm	2-allyl-3-isopropoxy-4- methoxybenzaldehyde 7	3.029
220 nm	Anisole 10 (Internal standard)	1.851

4.4.1 Raw data for standard curve

Table 15: Raw data for triplicates at each concentration for standard curve for 2-allyl-3-hydroxy-4-methoxybenzaldehyde $\mathbf{5}$ and 2-allyl-3-isopropoxy-4-methoxybenzaldehyde $\mathbf{7}$

	2-allyl- methoxyl	3-hydroxy-4- benzaldehvde	5	2-allyl- methox	3-isopropo vbenzalde	oxy-4- hvde 7	Anisole 10 (Internal Standard)			
	Retention	Area	Average	Retention	tention Area Average		Retention	Area	Average	
PPM	time	(mAU*S)	Area	time	(mAU*S)	Area	time	(mAU*S)	Area	
	1,446	68,944	07.005	3,055	40,73		1,861	211,000		
8	1,438	65,666	67,025	3,02	40,60	40,334	1,85	214,077	214,187	
	1,437	66,464		3,012	39,68		1,847	214,298		
	1,44	91,894	00 540	3,043	58,93		1,854	213,575		
12	1,437	89,273	90,510	3,035	59,26	59,330	1,853	216,687	215,887	
	1,435	90,364		3,01	59,79		1,846	217,399		
	1,436	114,964	444.000	3,033	80,55		1,852	215,671		
16	1,435	113,704	114,220	3,034	79,94	80,011	1,852	215,915	215,455	
	1,433	113,992		3,016	79,54		1,847	214,780	· -	
	1,432	141,040	140 102	3,025	99,34	99,901	1,846	216,117	215,823	
20	1,436	139,718	140,193	3,026	101,86		1,849	215,769		
	1,435	139,823		3,032	98,51		1,851	215,584		
	1,438	165,021	165.015	3,052	120,95	119,848	1,857	216,641	216,529	
24	1,435	164,330	165,015	3,014	119,67		1,848	216,268		
	1,434	165,695		3,011	118,92		1,846	216,678		
	1,451	191,351	100 040	3,077	142,94		1,874	217,995		
28	1,442	189,808	109,040	3,047	140,93	141,019	1,862	218,000	218,399	
	1,439	188,361		3,017	139,18		1,85	219,202		
	1,435	213,910	212 007	3,05	161,21		1,853	215,586		
32	1,4444	213,340	213,997	3,059	160,55	161,386	1,861	216,204	216,365	
	1,439	214,740		3,025	162,40		1,853	217,307		
	1,434	239,197	228 010	3,015	178,00		1,848	215,717		
36	1,431	237,377	230,919	3,006	178,97	179,342	1,843	215,548	216,387	
	1,431	240,184		3,006	181,06		1,844	217,897		
	1,431	262,151		3,008	200,25		1,844	217,452		
40	1,44	262,695	262,544	3,037	196,67	197,853	1,854	216,015	216,846	
	1,432	262,785		3,009	196,64		1,845	217,071		

4.4.2 Standard curve graph

Figure 24: Standard curve for 2-allyl-3-hydroxy-4-methoxybenzaldehyde **5** and 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7** at 220 nm

4.4.3 Example HPLC Chromatograms

Figure 25: Chromatogram for standard curve at 220 nm at 30 ppm 2-allyl-3-hydroxy-4-methoxybenzaldehyde **5** (1.437 min) and 2-allyl-3-isopropoxy-4-methoxybenzaldehyde **7** (3.029 min) and Anisole **10** (1.851 min)

Figure 26: Chromatogram protection reaction (entry 8) using potassium hydroxide solution at 25 ppm

Figure 27: Chromatogram protection reaction (entry 29) using potassium hydroxide solution at 25 ppm

4.4.4 Experiment calculations

Table	16:	Calculations f	or experiments	conducted for	r reduction	using polymer	supported	sodium	borohydride
-------	-----	----------------	----------------	---------------	-------------	---------------	-----------	--------	-------------

Exp No	Α	В	с	D	Е	F	G	н	I	J	к
1	165.05	5.03	0.50	25.15	200	55.21	11.06	2211.72	2.21	88.47	43.97
2	165.05	5.03	0.50	25.15	200	45.84	9.18	1836.39	1.84	73.46	36.51
3	165.10	5.03	0.50	25.16	200	30.63	6.14	1227.13	1.23	49.09	24.39
4	165.10	5.03	0.50	25.16	200	31.75	6.36	1272.10	1.27	50.88	25.28
5	165.10	5.03	0.50	25.16	200	29.80	5.97	1193.76	1.19	47.75	23.73
6	165.10	5.03	0.50	25.16	200	23.01	4.61	921.82	0.92	36.87	18.32
7	165.10	5.03	0.50	25.16	200	12.86	2.58	515.09	0.52	20.60	10.24
8	201.90	6.15	0.62	30.76	200	105.25	21.08	4216.50	4.22	168.66	68.53
9	193.90	5.91	0.59	29.54	200	95.40	19.11	3821.98	3.82	152.88	64.68
10	191.00	5.82	0.58	29.10	200	92.34	18.50	3699.28	3.70	147.97	63.56
11	192.80	5.88	0.59	29.38	200	90.54	18.14	3627.37	3.63	145.09	61.74
12	194.80	5.28	0.53	26.38	200	77.99	15.62	3124.42	3.12	140.60	59.21
13	198.10	5.37	0.54	26.83	200	79.06	15.84	3167.17	3.17	142.52	59.02
14	380.60	11.60	1.16	57.99	200	170.37	34.13	6825.48	6.83	273.02	58.85
15	194.40	5.27	0.53	26.33	200	75.99	15.22	3044.33	3.04	136.99	57.81
16	105.10	3.20	0.64	32.03	100	88.01	17.63	1763.00	1.76	70.52	55.05
17	198.30	6.04	0.60	30.21	200	80.54	16.13	3226.49	3.23	129.06	53.39
18	191.80	5.84	0.58	29.22	200	75.19	15.06	3012.15	3.01	120.49	51.54
19	101.90	3.11	0.62	31.05	100	79.59	15.94	1594.27	1.59	63.77	51.34
20	194.00	5.91	0.59	29.56	200	72.82	14.59	2917.23	2.92	116.69	49.35
21	194.80	5.94	0.59	29.68	200	69.84	13.99	2797.73	2.80	111.91	47.13
22	193.80	5.91	0.59	29.53	200	82.07	16.44	3288.05	3.29	131.52	55.68
23	192.80	5.88	0.59	29.38	200	71.31	14.28	2856.75	2.86	114.27	48.62
24	77.04	2.35	0.47	23.48	100	52.20	10.46	1045.56	1.05	41.82	44.54
25	77.04	2.35	0.47	23.48	100	68.57	13.73	1373.49	1.37	54.94	58.51
26	80.50	4.91	0.49	24.53	200	41.58	8.33	1665.96	1.67	33.32	33.96
27	80.50	4.91	0.49	24.53	200	61.42	12.30	2460.75	2.46	49.22	50.16
28	39.12	2.38	0.48	23.84	100	47.34	9.48	948.34	0.95	18.97	39.78
29	77.04	2.35	0.47	23.48	100	100.84	20.20	2019.82	2.02	80.79	86.04
30	77.68	2.37	0.47	23.67	100	89.43	17.91	1791.27	1.79	71.65	75.67
31	39.12	2.38	0.48	23.84	100	48.88	9.79	979.19	0.98	19.58	41.07

4.5 HPLC analysis for the aldehyde reduction

Table 17: HPLC method information for optimization of (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8

Quat. Pump							
Flow rate	1.00 mL.min ⁻¹						

Maximum pressure	400 bar					
Stop time	7 mir	nutes				
Oven Temperature	35	°C				
Injection Volume	2.00 uL					
Channel	Name	Percentage (%)				
А	Organic (50 % MeOH/ACN)	60				
P	Aqueous 10 mM Phosphate buffer	40				
В	(90 % H ₂ O/Organic)	40				
Signals	Name	Retention time (min)				
210 mm	2-allyl-3-isopropoxy-4-	4 45 4				
210 hm	methoxybenzaldehyde 7	4.454				
210	(2-allyl-3-isopropoxy-4-	2 704				
210 nm	methoxyphenyl)methanol 8	2.794				
210 nm	Anisole 10 (Internal standard)	2.302				

4.5.1 Raw data for standard curve

Table 18: Raw data for triplicates at each concentration for standard curve for (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol **8**

	(2-a metho	llyl-3-isopropo xyphenyl)meth	ky-4- Janol 8	Anisole	e 10 (Internal sta	andard)	
DDM	Retention	Area	Average	Retention	Area	Average	
PPM	time	(mAU*S)	Area	time	(mAU*S)	Area	
	2.822	118.062		2.299	195.744		
0	2.826	111.586	447 7740	2.302	189.702	404 70	
8	2.832	127.538	117.7746	2.305	195.774	191.73	
	2.835	113.912		2.306	185.699		
	2.843	172.908		2.311	191.802		
10	2.878	170.603	470 700	2.33	191.496	102 110	
12	2.83	179.118	172.703	2.306	198.772	193.440	
	2.823	168.183		2.3	191.712		
	2.829	229.446		2.304	192.057		
16	2.842	227.327	000 5400	2.312	191.403	102 257	
	2.826	228.725	230.5423	2.301	192.919	193.357	
	2.834	236.672		2.309	197.048		
	2.84	289.051		2.311	194.098		
20	2.848	288.881	000 4700	2.316	194.485	104.054	
20	2.819	288.1	289.4722	2.298	190.899	194.004	
	2.83	291.857		2.305	196.733		
	2.832	355.547		2.304	192.497		
24	2.827	346.697	240,0006	2.303	192.944	104.62	
24	2.838	347.143	349.9926	2.309	195.284	194.63	
	2.835	350.584		2.308	197.794		
	2.818	402.65		2.297	194.774		
	2.812	403.336	400 0047	2.294	202.473	407 747	
28	2.833	401.947	402.2017	2.304	194.95	197.717	
	2.815	400.873		2.295	198.672		
	2.832	458.862		2.307	194.602		
32	2.827	462.118	462.5346	2.302	196.909	196.914	
	2.83	466.624		2.307	199.232		
36	2.833	523.034	520.9403	2.309	195.356	197.17	

	2.826	518.316		2.303	197.018	
	2.83	520.916		2.306	196.264	
	2.825	521.495		2.301	200.043	
	2.833	574.388		2.308	199.295	
10	2.834	574.03		2.307	192.807	195.59
40	2.833	583.572	577.4676	2.307	195.194	
	2.837	577.881		2.309	195.064	

4.5.2 Standard curve graph

Figure 28: Standard curve for (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8 at 210 nm

4.5.3 Example HPLC Chromatograms

Figure 29: Chromatogram for standard curve at 210 nm at 32 ppm for (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8 (2.794 min) and 2-allyl-3-isopropoxy-4-methoxybenzaldehyde 7 (4.454 min)

Figure 30: Chromatogram reduction reaction (entry 8) using sodium borohydride solution at 30 ppm

4.5.4 Experiment calculations

Exp No	А	В	С	D	Е	F	G	н	I	J	к
1	148.6	5.00	0.50	24.98	200	213.95	14.80	2960.49	2.96	88.81	59.77
2	148.3	4.99	0.50	24.93	200	248.18	17.17	3434.12	3.43	103.02	69.47
3	148.4	4.99	0.50	24.95	200	160.66	11.12	2223.08	2.22	66.69	44.94
4	148.6	5.00	0.50	24.98	200	243.51	16.85	3369.39	3.37	101.08	68.02
5	148.7	5.00	0.50	25.00	200	227.05	15.71	3141.68	3.14	94.25	63.38
6	148.2	4.98	0.50	24.91	200	287.05	19.86	3971.91	3.97	119.16	80.40
7	148.3	4.99	0.50	24.93	200	311.70	21.56	4312.94	4.31	129.39	87.25

Table 19: Calculations for experiments conducted for reduction using polymer supported sodium borohydride

Table 20: Calculations for experiments conducted for reduction using sodium borohydride solution

Exp No	Α	В	С	D	Е	F	G	н	I	J	к
1	150.9	5.07	0.51	25.37	203	358.13	24.78	5028.17	5.03	125.70	82.59
2	150.9	5.07	0.51	25.37	203	345.89	23.93	4856.29	4.86	121.41	79.77
3	150.9	5.07	0.51	25.37	203	380.30	26.31	5339.40	5.34	133.48	87.70
4	150.9	5.07	0.51	25.37	203	392.27	27.14	5507.39	5.51	137.68	90.46
5	148.7	5.00	0.50	24.99	200	362.39	25.07	5012.52	5.01	125.31	83.57
6	149.9	5.04	0.50	25.20	202	343.37	23.76	4788.43	4.79	119.71	79.19
7	149.9	5.04	0.50	25.20	202	353.64	24.47	4931.69	4.93	123.29	81.56
8	148.7	5.00	0.50	24.99	200	402.00	27.81	5560.38	5.56	139.01	92.71
9	148.7	5.00	0.50	24.99	200	362.39	25.07	5012.52	5.01	125.31	83.57
10	148.7	4.99	0.50	24.97	200	346.34	23.96	4786.15	4.79	124.44	83.07
11	149.9	5.04	0.50	25.20	202	343.37	23.76	4788.43	4.79	119.71	79.19

4.6 HPLC analysis for the second allylation

Table 21: HPLC method information for optimization of 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9

Quat. Pump									
Flow rate	1.00 m	L.min ⁻¹							
Maximum pressure	400	bar							
Stop time	15 mi	nutes							
Oven Temperature	35 °C								
Injection Volume	2.00 uL								
Channel	Name	Percentage (%)							
А	Organic (50 % MeOH/ACN)	60							
В	Aqueous 10 mM Phosphate buffer (90 % H₂O/Organic)	40							
Signals	Name	Retention time (min)							
210 nm	2-allyl-3-isopropoxy-4- methoxyphenyl)methanol 23	2.842							
210 nm	2-allyl-1-((allyloxy)methyl)-3- isopropoxy-4-methoxybenzene 9	12.635							
210 nm	Anisole 10 (Internal standard)	2.312							

4.6.1 Raw data for standard curve

Table 22: Raw data for triplicates at each concentration for standard curve for 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene ${\bf 9}$

	2-allyl-1-((ally m	loxy)methyl)-3- ethoxybenzene	isopropoxy-4- 9	Anisole 10 (Internal standard)			
DDM	Retention	Area	Average	Retention	Area	Average	
FFINI	time	(mAU*S)	Area	time	(mAU*S)	Area	
	12.498	108.301		2.299	195.744		
0	12.529	113.333	110 600	2.302	189.702	101 72	
0	12.543	116.618	112.033	2.305	195.774	191.75	
	12.516	112.281		2.306	185.699		
	12.564	170.909		2.311	191.802		
10	12.887	156.423	160 709	2.33	191.496	102 446	
12	12.528	170.925	160.796	2.306	198.772	193.440	
	12.501	144.934		2.3	191.712		
	12.488	214.966		2.304	192.057		
16	12.635	186.987	200 502	2.312	191.403	400.057	
	12.464	203.858	209.593	2.301	192.919	193.357	
	12.527	232.56		2.309	197.048		
20	12.54	256.135		2.311	194.098		
	12.631	284.768	269 122	2.316	194.485	404.054	
	12.475	267.461	268.122	2.298	190.899	194.054	
	12.531	264.125		2.305	196.733		
	12.514	305.583		2.304	192.497		
24	12.601	316.829	200 525	2.303	192.944	104.62	
24	12.537	312.303	306.555	2.309	195.284	134.00	
	12.524	299.424		2.308	197.794		
	12.51	357.065		2.297	194.774		
29	12.548	370.957	260.222	2.294	202.473	107 717	
28	12.384	359.945	360.322	2.304	194.95	197.717	
	12.502	353.322		2.295	198.672		
	12.531	412.432		2.307	194.602		
32	12.467	410.094	413.423	2.302	196.909	196.914	
	12.54	417.744		2.307	199.232		
	12.58	464.48		2.309	195.356		
26	12.468	472.772	475 505	2.303	197.018	107 17	
30	12.48	472.633	475.525	2.306	196.264	197.17	
	12.513	492.213		2.301	200.043		
	12.478	514.906		2.308	199.295		
10	12.531	538.272	EDE 25	2.307	192.807	105 50	
40	12.504	509.217	525.35	2.307	195.194	195.59	
	12.476	539.004		2.309	195.064		

4.6.2 Standard curve graph

Figure 31: Standard curve for 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9 at 210 nm

4.6.3 Example HPLC Chromatogram

Figure 32: Chromatogram for standard curve at 210 nm at 16 ppm for 2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8 (2.842 min), 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9 (12.365 min), and Anisole 10 (2.312 min)

Figure 33: Chromatogram of 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9 (entry 16) at 25 ppm

4.6.4 Experiment calculations

Table 23: Calculations for experiments conducted for 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9

Exp No	A	в	С	D	Е	F	G	н	I	J	к
1	255.7	4.98	0.50	24.92	200	199.64	15.26	3051.16	3.05	183.07	61.22
2	255.2	4.97	0.50	24.87	200	291.65	22.29	4457.42	4.46	267.45	89.61

2	255.9	4.00	0.50	24.02	200	100.75	7 70	1520.96	1 5 4	02.20	20.00
3	200.0	4.99	0.50	24.93	200	100.75	7.70	1009.00	1.04	92.39	30.00
4	256.4	5.00	0.50	24.99	200	260.77	19.93	3985.54	3.99	239.13	79.75
5	255	4.97	0.50	24.85	200	205.13	15.68	3135.16	3.14	188.11	63.08
6	256.2	4.99	0.50	24.97	200	293.93	22.46	4492.29	4.49	269.54	89.96
7	255.7	4.98	0.50	24.92	200	123.25	9.42	1883.72	1.88	113.02	37.79
8	255.1	4.97	0.50	24.86	200	280.30	21.42	4283.91	4.28	257.03	86.15
9	255.9	4.99	0.50	24.94	200	149.27	11.41	2281.35	2.28	136.88	45.74
10	255.1	4.97	0.50	24.86	200	260.30	19.89	3978.32	3.98	238.70	80.01
11	256.3	5.00	0.50	24.98	200	129.19	9.87	1974.44	1.97	118.47	39.52
12	256.7	5.00	0.50	25.02	200	269.12	20.57	4113.11	4.11	246.79	82.20
13	255.7	4.98	0.50	24.92	200	192.98	14.75	2949.39	2.95	176.96	59.18
14	255.6	4.98	0.50	24.91	200	274.72	20.99	4198.65	4.20	251.92	84.27
15	255.6	4.98	0.50	24.91	200	99.39	7.59	1518.97	1.52	91.14	30.49
16	256.2	4.99	0.50	24.97	200	301.08	23.01	4601.50	4.60	276.09	92.14
17	256.5	4.98	0.50	24.89	200	234.54	17.92	3584.58	3.58	215.07	72.00
18	255.4	4.98	0.50	24.89	200	215.53	16.47	3294.08	3.29	197.64	66.17

4.7 HPLC analysis for the RCM

Table 24: HPLC method information for optimization of (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

Quat. Pump										
Flow rate	1.00 m	L.min ⁻¹								
Maximum pressure	400	bar								
Stop time	15 mi	nutes								
Oven Temperature 35 °C										
Injection Volume	2.00 uL									
Channel	Name	Percentage (%)								
А	Organic (50 % MeOH/ACN)	60								
В	Aqueous 10 mM Phosphate buffer (90 % H₂O/Organic)	40								
Signals	Name	Retention time (min)								
210 nm	2-allyl-1-((allyloxy)methyl)-3- isopropoxy-4-methoxybenzene 9	11.407								
210 nm	(<i>Z</i>)-7-isopropoxy-8-methoxy-3,6- dihydro-1 <i>H</i> -benzo[<i>c</i>]oxocine 1	4.408								
210 nm	Anisole 10 (Internal standard)	2.158								

4.7.1 Raw data for standard curve

Table 25: Raw data for triplicates at each concentration for standard curve for (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

	(<i>Z</i>)-7-iso -dihydro	propoxy-8-metl o-1 <i>H</i> -benzo[<i>c</i>]o>	hoxy-3,6 kocine 1	Anisole 10 (Internal standard)			
РРМ	Retention time	Area (mAU*S)	Average Area	Retention time	Area (mAU*S)	Average Area	
	4.472	76.00193	76.56762	2.183	243.965	245.689	
8	4.451	75.96502		2.175	247.224		
	4.466	77.7359		2.18	245.878		
	4.457	117.3149		2.175	248.04		
12	4.408	112.7567	115.0638	2.158	247.604	248.023	
	4.409	115.1197		2.159	248.426		

	4.488	151.5451		2.181	247.708	
16	4.49	153.7041	152.9026	2.188	247.149	247.674
	4.493	153.4585		2.19	248.167	
	4.427	185.8389		2.165	250.686	
20	4.362	191.0564	188.6931	2.15	245.378	246.954
	4.36	189.1839		2.15	244.798	
	4.372	222.6228		2.155	250.405	
24	4.487	230.6926	227.1958	2.185	247.385	249.683
	4.473	228.272		2.183	251.26	
	4.364	264.0697		2.154	247.846	247.52
28	4.369	261.9721	263.6516	2.148	244.727	
	4.394	264.913		2.154	249.987	
	4.398	306.9771		2.163	246.263	
32	4.389	304.1098	306.9647	2.158	248.801	245.851
	4.554	309.8073		2.227	242.488	
	4.401	341.0914		2.172	246.392	
36	4.378	341.9056	342.8133	2.153	245.791	246.198
	4.392	345.443		2.161	246.411	
40	4.9	382.4654		2.153	246.858	
	4.376	381.9564	382.5757	2.159	245.278	246.397
	4.376	383.3054		2.159	247.056	

4.7.2 Standard curve graph

Figure 34: Standard curve for (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1 at 210 nm

4.7.3 Example HPLC Chromatograms

Figure 35: Chromatogram for standard curve at 210 nm at 25 ppm for -allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9 (11.407 min), (*Z*)-7-isopropoxy-8-methoxy-3,6-dihydro-1*H*-benzo[*c*]oxocine 1 (4.408 min), and Anisole 10 (2.158 min)

Figure 36: Chromatogram of (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1 (Batch isolated)

Figure 37: Chromatogram of (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1 (entry 8)

4.7.4 Experiments calculations

Table 26: Calculations for experiments conducted for (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

Exp No	А	В	с	D	Е	F	G	н	I	J	к
1	111.2	2.00	0.20	19.98	100	86.69	9.10	910.21	0.91	18.20	45.55
2	110.5	1.99	0.20	19.86	100	81.83	8.59	859.17	0.86	17.18	43.27
3	110.8	1.99	0.20	19.91	100	91.02	9.56	955.72	0.96	19.11	48.00
4	110.3	1.98	0.20	19.82	100	77.15	8.10	810.11	0.81	16.20	40.87
5	111.5	2.00	0.20	20.04	100	47.14	4.95	494.96	0.49	9.90	24.70
6	110.8	1.99	0.20	19.91	100	67.98	7.14	713.80	0.71	14.28	35.85
7	110.7	1.99	0.20	19.89	100	88.08	9.25	924.80	0.92	18.50	46.49
8	111.2	2.00	0.20	19.98	100	104.19	10.94	1093.99	1.09	21.88	54.75
9	111.2	2.00	0.20	19.98	100	59.45	6.24	624.22	0.62	12.48	43.28
10	110.5	1.99	0.20	19.86	100	85.80	9.01	900.89	0.90	18.02	45.37
11	110.8	1.99	0.20	19.91	100	54.15	5.69	568.56	0.57	11.37	28.56
12	110.3	1.98	0.20	19.82	100	69.81	7.33	732.96	0.73	14.66	36.98
13	111.5	2.00	0.20	20.04	100	28.66	3.01	300.93	0.30	6.02	15.02

14	110.8	1.99	0.20	19.91	100	44.40	4.66	466.22	0.47	9.32	23.42
15	110.7	1.99	0.20	19.89	100	50.98	5.35	535.33	0.54	10.71	26.91
16	111.2	2.00	0.20	19.98	100	70.44	7.40	739.58	0.74	14.79	37.01
17	111.4	2.00	0.20	20.02	100	66.09	6.94	693.91	0.69	13.88	34.66
18	111.4	2.00	0.20	20.02	100	69.15	7.26	726.10	0.73	14.52	36.27
19	111.4	2.00	0.20	20.02	100	65.49	6.88	687.63	0.69	13.75	34.35

5. Characterization data 5.1 <u>Nuclear magnetic</u>

Nuclear magnetic resonance spectra

NMR 1: ¹H spectrum for Isovanillin 3 using internal standard DMSO₂

NMR 2: ¹H spectrum for 3-(allyloxy)-4-methoxybenzaldehyde 4

NMR 4: DEPT 135 spectrum for 3-(allyloxy)-4-methoxybenzaldehyde 4

NMR 5: ¹H spectrum for 2-allyl-3-hydroxy-4-methoxybenzaldehyde 5

NMR 6: ¹³C spectrum for 2-allyl-3-hydroxy-4-methoxybenzaldehyde 5

NMR 8: ¹H spectrum for 2-allyl-3-isopropoxy-4-methoxybenzaldehyde 7

NMR 10: DEPT 135 spectrum for 2-allyl-3-isopropoxy-4-methoxybenzaldehyde 7

NMR 11: ¹H spectrum for (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8

NMR 13: DEPT 135 spectrum for (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8

NMR 14: ¹H spectrum for 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9

NMR 16: DEPT 135 spectrum for 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9

NMR 17: ¹H spectrum for (*Z*)-7-isopropoxy-8-methoxy-3,6-dihydro-1*H*-benzo[*c*]oxocine 1

NMR 18: ¹³C spectrum for (*Z*)-7-isopropoxy-8-methoxy-3,6-dihydro-1*H*-benzo[*c*]oxocine 1

NMR 19: DEPT 135 spectrum for (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

NMR 20: HSQCGP spectrum for (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

Page 50 of 57

NMR 21: COSY90 spectrum for (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

5.2 Fourier transform infrared specta

Figure 51: IR spectrum - Isovanillin 3

Figure 52: IR spectrum - 3-(allyloxy)-4-methoxybenzaldehyde 4

Figure 53: IR spectrum - 2-allyl-3-hydroxy-4-methoxybenzaldehyde 5

Figure 54: IR spectrum - 2-allyl-3-isopropoxy-4-methoxybenzaldehyde 7

Figure 55: IR spectrum - (2-allyl-3-isopropoxy-4-methoxyphenyl)methanol 8

Figure 56: IR spectrum - 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9

5.3 Mass spectrometry spectra

Figure 57: Mass spectrum - 3-(allyloxy)-4-methoxybenzaldehyde 4

Figure 58: Mass spectrum - 2-allyl-3-hydroxy-4-methoxybenzaldehyde 5

Figure 59: Mass spectrum - 2-allyl-3-isopropoxy-4-methoxybenzaldehyde 7

Figure 61: Mass spectrum - 2-allyl-1-((allyloxy)methyl)-3-isopropoxy-4-methoxybenzene 9

Figure 62: Mass spectrum 1: (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

Figure 63: Mass spectrum - (Z)-7-isopropoxy-8-methoxy-3,6-dihydro-1H-benzo[c]oxocine 1

6. References

1 R. Pathak, J.-L. Panayides, T. D. Jeftic, C. B. De Koning and W. A. L. Van Otterlo, *The Synthesis of 5-, 6-*, 7-and 8-Membered Oxygen-containing Benzo-fused Rings using Alkene Isomerization and Ring-closing Metathesis Reactions, .