Supplementary Material

for

2002-2022: 20 years of e-waste regulation in the European Union and the Worldwide trends in legislation and innovation technologies for circular economy.

A. Serpe^{1,2}*, D. Purchase³*, L. Bisschop⁴, D. Chatterjee⁵, G. De Gioannis^{1,2}, H. Garelick³, A. Kumar⁶, W.J.G.M. Peijnenburg^{7,8}, V. M. I. Piro¹, M. Cera¹, Y. Shevah⁹, S. Verbeek.⁴

¹Department of Civil and Environmental Engineering and Architecture (DICAAR), University of Cagliari, and INSTM unit, Cagliari, Italy

²National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Cagliari, Italy

³Faculty of Science and Technology, Middlesex University, London, United Kingdom

⁴Erasmus University Rotterdam, Rotterdam, Netherlands

⁵University of Kalyani, Kalyani, India

⁶School of Chemistry, University of St. Andrews, United Kingdom

⁷National Institute for Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, Netherlands

⁸University of Leiden, Center for Environmental Sciences, Leiden, Netherlands

⁹TAHAL Consulting Eng., Ltd., Tel Aviv, Israel.

Content:

Sect. S1. Industrial technologies and out-puts.

Table S1. PV technologies approaching the market

Figure S1. Multilayer structure and composition for a Si-technology-based photovoltaic panel

Table S2. Average mechanical pre-treatment output from industrial plants by e-waste category in Italy in 2016

Sect. S2. Trends in research and innovation products concerning e-waste valorization

Table S3. Trends in research and innovation products concerning e-waste valorization

Table S4. Publications by country/territory

Table S5. Patent's statistics

Table S6. Results on Google web search engine (data sourcing on 29/01/24).

References

S1. Industrial technologies and out-puts.

Table S1. Average mechanical pre-treatment output from industrial plants by e-waste category in Italy

in 2016.^{1,2}

Output mechanical pre-treatment plant	Cold and climate (R1)	Large appliances (R2)	Electronic devices (R3)	Small appliances (R4)	Light sources (R5)
Power supplies	-	-	-	0.4%	-
Battery	-	-	-	0.1%	-
Lead-acid batteries	-	-	-	0.5%	-
Mixed Cables	0.5%	0.6%	1.8%	2.8%	-
Cement	-	5.0%	-	-	-
Components	-	-	-	0.8%	-
Compressors	13.4%	-	-	-	-
Phosphorus	-	-	0.5%	-	-
Copper yokes	-	-	2.7%	-	-
HDDs and other drives	-	-	-	1.2%	-
Wood	-	0.3%	1.5%	0.8%	-
Quenched and tempered material	0.2%	73.1%	0.0%	33.9%	-
Ferrous	49.9%	14.3%	14,5%	28.3%	1.0%
Non-ferrous metals	4.4%	-	0.4%	2.7%	3.0%
Engines	0.1%	2.1%	0.2%	6.5%	-
Packaging	-	-	-	0.1%	3.0%
Plastics	16.1%	1.1%	15.0%	15.4%	10.0%
BFR Plastics	-	-	-	2.1%	-
Shredder residues	1.1%	3.0%	1.0%	1.5%	-
Hazardous waste	0.7%	0.1%	0.6%	1.7%	2.0%
Residual waste	-	-	0.4%	-	-
PCBs	-	-	8.2%	0.9%	-
High-level PCBs	-	-	-	0.1%	-
Low-level PCBs	-	-	1.8%	0.1%	-
Polyurethane foam	12.6%	-	-	-	-
Toner	-	-	-	-	-
Mixed CRT glass	-	-	21.2%	-	-
Front glass	-	-	30.0%	-	-
Non-CRT glass	0.8%	0.5%	-	-	81.0%
Grand total	100.0%	100.0%	100.0%	100.0%	100.0%

Table S2. PV technologies approaching the market.

PV technology	Brief description
HIT solar cells	<i>Heterojunction with Intrinsic Thin Layer</i> technology combines amorphous silicon and crystalline silicon to achieve high efficiency and better performance in high-temperature conditions.
Multijunction solar cells	Typically used in <i>Concentrated Photovoltaic</i> (CPV) systems and space applications. They consist of multiple semiconductor materials stacked on top of each other to capture different parts of the solar spectrum, thus achieving very high efficiency.

Tandem solar cells	Tandem solar cells stack multiple layers of solar cell materials with varying bandgaps to capture a wider range of the solar spectrum and improve efficiency.
OPV solar cells	<i>Organic Photovoltaics</i> use organic materials to convert sunlight into electricity. They are lightweight and flexible but generally have lower efficiency than traditional PV technologies.
Perovskite solar cells	Emerging technology known for the potential to achieve high efficiency at a lower cost than others. Still in the research and development stage, this technology hold promises for future PV applications.

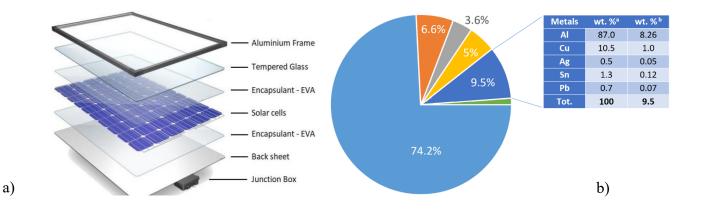


Figure S1. a) Typical multilayer structure configuration for a Si-technology-based photovoltaic panel and b) its composition. • Glass, • EVA, • Tedlar, • Si, • Metals, • Other. ^a Metal fraction composition; ^b Percentage concerning the whole PVP. Adapted from ³.

S2. Trends in research and innovation products concerning e-waste valorization

In this section the distribution of publications and patents by year, subject, and geography related to *urban mining*, *ecodesign*, and *e-waste*, is detailed. The study covers data spanning from 2002 until 2022 and exploited the Scopus database⁴ for publications and Orbit database⁵ for patents.

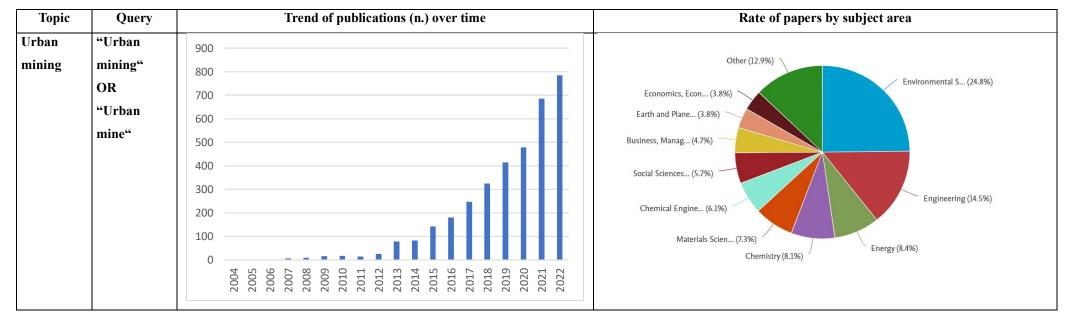
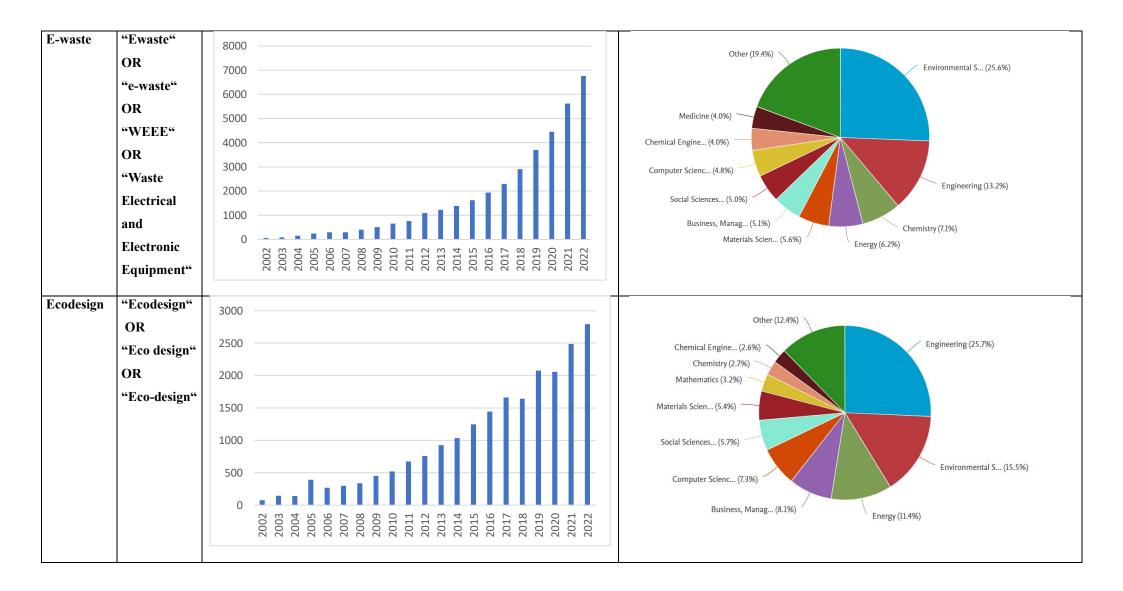



Table S3. Trends in research and innovation products concerning e-waste valorization (data sourcing on 29/01/24).

Territory	Ecodesign	Urban Mining	E-waste
USA	2380	297	4399
CHINA	2271	747	11827
UK	1822	179	2239
FRANCE	1439	115	977
ITALY	1830	262	1476
GERMANY	1432	304	1521
SPAIN	1162	97	985
JAPAN	807	302	1164

Table S4. Publications by country/territory (data sourcing on 29/01/24)

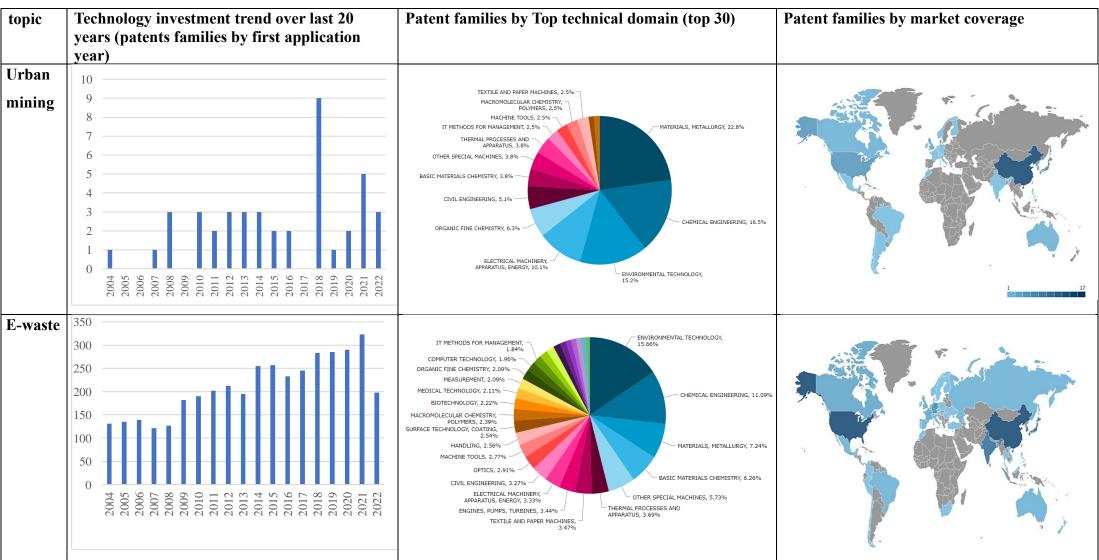
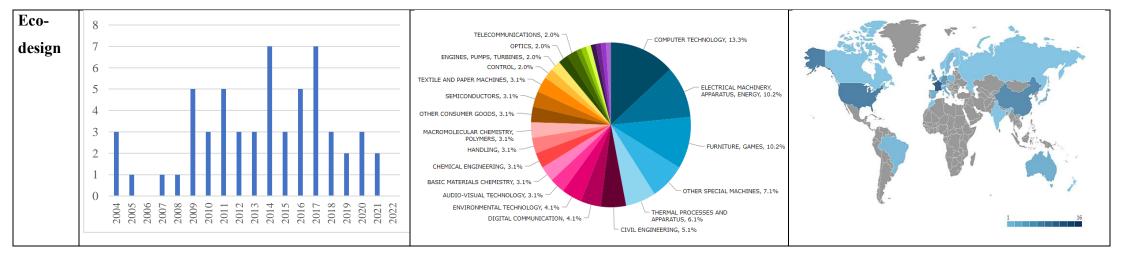



Table S5. Patent's statistics (data sourcing on 30/01/24).

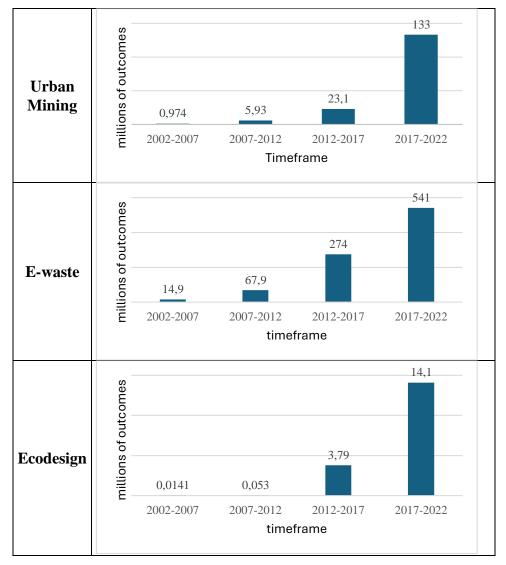


Table S6. Results on Google web search engine (data sourcing on 29/01/24).

References

1. *Rifiuti da Apparecchiature Elettriche ed Elettroniche*. CdC RAEE | Centro di Coordinamento RAEE. https://www.cdcraee.it/aee-e-raee/rifiuti-da-apparecchiature-elettriche-ed-elettroniche/ (accessed 2023-12-20).

2. *DECRETO LEGISLATIVO 14 marzo 2014, n. 49 - Normattiva*. https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2014;49 (accessed 2023-12-20).

3. Monier, V.; Hestin, M. *Study on Photovoltaic Panels Supplementing the Impact Assessment for a Recast of the WEEE Directive*; A project under the Framework contract ENV.G.4/FRA/2007/0067; Final report; Bio Intelligence Service Sas: Paris, 2011.

https://ec.europa.eu/environment/pdf/waste/weee/Study%20on%20PVs%20Bio%20final.pdf. 4. <u>https://www.scopus.com/search/form.uri?display=basic#basic/</u>

5. https://www.orbit.com/