Supporting Information

Novel Antifouling Oligopeptides including β-amino acid

Taiki Umezawa^{a,b*}, Ira Novita Sari^{b,c}, Erina Yoshimura^d, Yasuyuki Nogata^{e*}

^aSection of Environmental Material Science, Faculty of Environmental Earth Science, Hokkaido

University, N10W5 Sapporo 060-0810, Japan,

^bDivision of Environmental Materials Science, Graduate School of Environmental Science,

Hokkaido University, Sapporo 060-0810, Japan

^cSection of Food Technology, Agricultural Technology Department, Politeknik Negeri Lampung,

Bandar Lampung, 35141, Indonesia.

^d CERES, Inc., 1-4-5 Midori, Abiko, Chiba 270-1153, Japan

^eEnvironmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan

e-mail: umezawa@ees.hokudai.ac.jp

e-mail: noga@criepi.denken.or.jp

Table of Contents

General Methods	S3
General Procedure for Synthesis of Tripeptide 3	S3
Characterization and Chemical Yield of Product	S4
Settlement and Mortality Test with Cyprids	S17
¹ H and ¹³ C NMR Spectra	S19

General Methods. The IR spectra were recorded on a JASCO FTIR-4100 Type A spectrometer (JASCO corporation, Tokyo, Japan) using a NaCl cell. ESI-MS were obtained on a JEOL JMS-700TZ (JEOL Ltd., Tokyo, Japan) or BRUKER DALTONICS micro TOF-HS focus spectrometer (Bruker Japan Ltd., Yokohama, Japan). Optical rotations were recorded on a HORIBA SEPA-300 polarimeter (HORIBA Ltd., Kyoto, Japan). The ¹H NMR and ¹³C NMR spectra were recorded using a JNM-EX 400 (400 MHz and 100 MHz) spectrometer (JEOL Ltd., Tokyo, Japan) or JNM-ECZR 500 (500 MHz and 126 MHz) spectrometer (JEOL Ltd., Tokyo, Japan). Chemical shifts were reported in ppm relative to CHCl₃ in CDCl₃ for ¹H NMR (δ = 7.26) and ¹³C NMR (δ = 77.0). Splitting patterns for ¹H NMR were designated as "s, d, t, q, m, dt, dd, and td". These symbols indicate "singlet, doublet, triplet, quartet, multiplet, doublettriplet, doubletdoublet, and tripletdoublet" respectively. All commercially obtained reagents were employed as received. Analytical TLC was carried out using pre-coated silica gel plates (Wako TLC Silicagel 70F₂₅₄, FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). Wakogel 60N 63-212 µm was used for column chromatography.

General Procedure for Synthesis of Tripeptide 3: To Boc- β -amino acid ester (1 equivalent) was added TFA/DCM (1:4 v/v, 0.10 M). After 1 h of stirring at room temperature, the mixture was concentrated *in vacuo*. The residue TFA salt was added 0.5 M NaOH aq, extracted with DCM, washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to afford crude amine, which was used in the next step without further purification.

To a solution of crude amine in MeCN (0.30 M) was added 4 N HCl in dioxane (1.0 equivalent) under Ar atmosphere. After 10 minutes of stirring at room temperature, the mixture was added 4 (1.0 equivalent) in MeCN (0.30 M), PyBrop (1.3 equivalent) and iPr_2NEt (3.0 equivalent) The mixture was stirred for 24 h, quenched with diluted NaOH, extracted with EtOAc, washed with

diluted HCl and brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The crude product was purified using column chromatography (Hexane:AcOEt = 70 : 30) to afford tripeptide **3**:

Characterization and Chemical Yield of Product

3a: $[\alpha]^{23}_{D}$ -52.2 (*c* 1.37, CHCl₃);

IR (neat) 3309, 2979, 2935, 2878, 1739, 1690, 1643, 1530, 1447, 1391, 1366, 1248, 1199, 1167, 1055, 1022, 862, 753, 701, 666 cm⁻¹;

¹H NMR (400 MHz, CDCl₃, 3:1 mixture of rotamers) δ 1.21 (3H×1/4, t, *J* = 7.1 Hz), 1.28 (3H×3/4, t, *J* = 7.2 Hz), 1.38-1.44 (12H, m), 1.70-1.84 (3H, m), 2.11-2.32 (1H, m), 2.94 (1H, dd, *J* = 12.0, 7.9 Hz), 3.04 (1H, dd, *J* = 12.0, 7.0 Hz), 3.30-3.57 (2H, m), 4.11 (2H×1/4, q, *J* = 7.1 Hz), 4.21 (2H×3/4, q, *J* = 7.1 Hz), 4.38-4.51 (2H, m), 4.54-4.68 (1H, m), 5.11 (1H×1/4, d, *J* = 5.7 Hz), 5.30 (1H×3/4, d, *J* = 8.6 Hz), 7.11-7.31 (5H, m);

¹³C NMR (101 MHz, CDCl₃) δ 14.06, 14.12, 16.8, 18.1, 21.9, 25.0, 27.1, 28.2, 28.3, 30.7, 38.9,
39.4, 46.6, 47.3, 48.4, 48.5, 53.3, 54.2, 59.9, 60.6, 61.1, 61.4, 79.7, 80.1, 126.9, 127.4, 128.4,
128.9, 129.3, 129.4, 136.1, 155.1, 155.5, 170.2, 171.8, 172.3, 172.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{24}H_{35}N_3O_6Na$ 484.2418; Found 484.2426.

3b: $[\alpha]^{23}_{D}$ -62.9 (*c* 1.63, CHCl₃);

IR (neat) 3309, 2960, 2872, 1739, 1690, 1644, 1531, 1446, 1367, 1342, 1249, 1169, 1029, 920, 867, 754, 700, 666cm⁻¹;

¹H NMR (400 MHz, CDCl₃, 2:1 mixture of rotamers) δ 0.85-0.98 (6H, m), 1.20 (3H×1/3, t, *J* = 7.3), 1.30 (3H×2/3, t, *J* = 7.3 Hz), 1.39 (9H, s), 1.54–2.00 (6H, m), 2.16-2.33 (1H, m), 2.86-3.10 (2H, m), 3.46-3.60 (2H, m), 4.10 (2H×1/3, q, *J* = 7.1 Hz), 4.19 (2H×/3, q, *J* = 7.2 Hz), 4.36-4.67 (3H, m), 5.07 (1H×1/3, d, *J* = 5.3 Hz), 5.28 (1H×2/3, d, *J* = 8.0 Hz), 7.09-7.31 (5H, m); ¹³C NMR (101 MHz, CDCl₃) δ 14.08, 14.14, 21.2, 21.9, 22.1, 22.7, 23.0, 24.8, 25.0, 27.1, 28.2, 30.6, 38.6, 39.1, 39.5, 41.4, 46.6, 47.3, 51.1, 51.4, 53.3, 54.3, 59.9, 60.7, 60.9, 61.2, 79.7, 80.2, 126.9, 127.5, 128.5, 128.9, 129.3, 135.4, 136.2, 155.1, 155.6, 170.4, 171.0, 171.1, 172.0, 172.3, 172.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₇H₄₁N₃O₆Na 526.2888; Found 526.2878.

3c: $[\alpha]^{23}_{D}$ -75.1 (*c* 1.75, CHCl₃);

IR (neat) 3308, 2958, 2872, 1741, 1687, 1643, 1523, 1497, 1390, 1366, 1339, 1248, 1168, 1080, 1046, 1020, 868, 752, 699 cm⁻¹;

¹H NMR (400 MHz, CDCl₃, 2.5:1 mixture of rotamers) δ 0.83-0.94 (6H, m), 1.39 (9H, s), 1.55-1.97 (5H, m), 2.13-2.30 (1H, m), 2.74-3.20 (3H, m), 3.41-3.58 (2H, m), 4.19 (1H×1/3.5, dt, *J* = 9.6, 5.7 Hz), 4.51-4.59 (2H, m), 4.63 (1H×2.5/3.5, q, *J* = 7.1 Hz), 4.97-5.31 (3H, m), 7.08 (1H×2.5/3.5, d, *J* = 5.9 Hz), 7.18 – 7.38 (10H, m), 8.17 (1H×1/3.5, d, *J* = 8.3 Hz);

¹³C NMR (101 MHz, CDCl₃) δ 21.0, 21.8, 21.9, 22.6, 22.9, 24.7, 25.0, 27.0, 28.2, 30.4, 38.4, 38.8, 39.4, 41.1, 46.4, 47.2, 51.1, 51.4, 53.2, 54.1, 59.8, 60.6, 66.7, 66.9, 77.2, 79.7, 80.2, 126.8, 127.4,

128.18, 128.19, 128.2, 128.4, 128.50, 128.52, 128.8, 129.30, 129.31, 135.1, 135.4, 135.7, 136.1, 155.0, 155.6, 170.4, 171.1, 171.9, 172.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{32}H_{43}N_3O_6Na$ 588.3044; Found 588.3041.

3d: To a solution of **3c** (12.5 mg, 0.0221 mmol) in AcOEt (0.5.0 mL) was added Pd-C (5 wt% Pd on carbon, 1.0 mg) at room temperature under Ar atmosphere. The mixture was stirred for 24 h under H₂ atmosphere, filtered through celite pad, and concentrated *in vacuo* to give **3d** (10.9 mg, 0.0216 mmol, 98%).

 $[\alpha]^{25}_{D}$ -34.6 (*c* 1.20, CHCl₃);

IR (neat) 3309, 2962, 2933, 2872, 1681, 1629 1452, 1392, 1367, 1246, 1166, 1100, 1052, 1002, 875, 754, 701 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 0.86-0.93 (9H, m), 1.46 (9H, s), 1.62-1.67 (2H, m), 1.81-2.07 (5H, m), 2.16-2.21 (1H, m), 2.45 (1H, dd, *J* = 13.3, 7.0 Hz), 2.72 (1H, dd, *J* = 13.3, 7.4 Hz), 3.15-3.19 (1H, m), 3.28-3.34 (1H, m), 4.43-4.59 (3H, m), 5.45 (1H, d, *J* = 9.3 Hz), 7.17-7.34 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 14.18, 14.25, 21.0, 21.8, 22.8, 24.6, 25.1, 27.5, 28.3, 38.4, 40.1, 41.8, 47.1, 54.0, 60.0, 71.1, 79.8, 81.2, 118.1, 126.2, 128.4, 129.3, 140.0, 156.0, 171.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₄₃N₃O₆Na 526.2888; Found 526.2892.

3e: $[\alpha]^{23}_{D}$ -56.6 (*c* 2.29, CHCl₃);

IR (neat) 3316, 3062, 2978, 1731, 1710, 1644, 1525, 1445, 1367, 1249, 1172, 1057, 1027, 917, 863, 753, 701, 666 cm⁻¹;

¹H NMR (400 MHz, CDCl₃, 3:1 mixture of rotamers) δ 1.23 (3H×1/4, t, *J* = 7.2), 1.26 (3H×3/4, t, 7.1 Hz), 1.41 (9H, s), 1.80-1.92 (3H, m), 2.51 (2H, t, *J* = 6.5 Hz), 2.91-3.05 (3H, m), 3.40-3.57 (4H, m), 4.15 (2H, q, *J* = 7.2 Hz), 4.49-4.51 (1H, m), 4.65 (1H, q, *J* = 7.6 Hz), 5.19 (1H×1/4, d, *J* = 7.0 Hz), 5.29 (1H×3/4, d, *J* = 8.5 Hz), 7.19-7.30 (5H, m);

¹³C NMR (101 MHz, CDCl₃) δ 14.2, 21.9, 24.9, 27.2, 28.3, 30.8, 33.7, 34.1, 35.0, 35.5, 39.4, 46.5, 47.2, 53.2, 54.1, 59.9, 60.5, 60.6, 60.8, 79.8, 80.2, 127.0, 127.4, 128.4, 128.8, 129.3, 129.3, 136.1, 155.0, 170.5, 171.5, 171.8, 172.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₄H₃₅N₃O₆Na 484.2418; Found 484.2412.

3f: $[\alpha]^{23}_{D}$ –49.7 (*c* 1.83, CHCl₃);

IR (neat) 3317, 2977, 2934, 2877, 1731, 1711, 1644, 1530, 1497, 1445, 1367, 1321, 1249, 1171, 1081, 1028, 865, 753, 701, 666 cm⁻¹;

¹H NMR (400 MHz, CDCl₃, 4:1 mixture of rotamers) δ 1.25 (3H, t, *J* = 7.1 Hz), 1.41 (9H, s), 1.79-1.90 (4H, m), 2.27-2.35 (2H, m), 2.91-3.07 (3H, m), 3.13-3.34 (2H, m), 3.43-3.58 (2H, m), 4.11 (2H, q, *J* = 7.1 Hz), 4.50-4.52 (1H, m), 4.67 (1H, q, *J* = 7.8 Hz), 5.14 (1H×1/5, d, *J* = 6.5 Hz), 5.26 (1H×4/5, d, *J* = 8.0), 7.18-7.33 (5H, m);

¹³C NMR (101 MHz, CDCl₃) δ 14.2, 21.9, 24.3, 24.8, 24.9, 27.1, 28.3, 30.6, 31.6, 31.8, 38.7, 39.1, 39.3, 39.4, 46.4, 47.3, 53.2, 54.1, 60.0, 60.38, 60.44, 60.9, 79.9, 80.3, 127.1, 127.5, 128.5, 128.9,

129.3, 135.4, 136.0, 155.0, 155.5, 170.5, 171.2, 171.9, 173.1, 173.2;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₃₇N₃O₆Na 498.2575; Found 498.2582.

3g: $[\alpha]^{23}_{D}$ –2.0 (*c* 0.99, CHCl₃);

IR (neat) 3416, 3316, 2973, 2876, 1714, 1651, 1515, 1455, 1391, 1366, 1247, 1170, 1048, 1026, 868, 752, 699 cm⁻¹;

¹H NMR (400 MHz, CDCl₃, 5:1 mixture of rotamers) δ 0.80 (6H, m), 1.10 (3H×1/6, d, *J* = 7.1 Hz), 1.22 (3H×5/6, d, *J* = 7.1 Hz), 1.34 (9H, s), 1.60-1.65 (1H, m), 1.97-2.19 (3H, m), 2.80-2.89 (3H, m), 3.15 (1H, dd, *J* = 13.9, 5.0 Hz), 3.41-3.52 (1H, m), 3.67-3.80 (2H, m), 4.53-4.57 (1H, m), 4.69 (1H, 1, *J* = 8.5 Hz), 5.03-5.12 (2H, m), 5.24 (1H×5/6, d, *J* = 8.8 Hz), 5.39 (1H×1/6, d, *J* = 7.4 Hz), 6.80 (1H×1/6, d, *J* = 9.1 Hz), 6.87 (1H×5/6, d, *J* = 9.8 Hz), 7.23-7.30 (10H, m); ¹³C NMR (101 MHz, CDCl₃) δ 15.8, 19.3, 19.8, 21.8, 24.9, 28.2, 28.3, 28.8, 30.9, 31.4, 31.7, 38.8, 40.0, 40.1, 46.1, 47.2, 52.9, 56.9, 57.2, 60.6, 66.3, 79.4, 126.6, 127.1, 128.1, <u>128.21, 128.28, 128.3, 128.52, 128.57, 129.41, 129.49</u>, 135.5, 136.0, 136.5, 155.1, 171.3, 171.5, 175.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₄₅N₃O₆Na 602.3201; Found 602.3195.

3h: $[\alpha]^{17}_{D}$ -33.9 (*c* 0.53, CHCl₃);

IR (neat) 3310, 2977, 2934, 1732, 1709, 1644, 1525, 1498, 1446, 1391, 1367, 1295, 1249, 1170, 1095, 1028, 918, 868, 752, 702 cm⁻¹;

¹H NMR (500 MHz, CDCl₃) δ 1.17 (3H, m), 1.42 (9H, s), 1.85-2.07 (4H, m), 2.26-2.30 (1H, m), 2.39-2.54 (2H, m), 2.86-2.93 (2H, m), 2.99 (1H×1/2, dd, *J* = 12.5, 5.9 Hz), 3.10 (1H×1/2, dd, *J* = 12.9, 6.6 Hz), 3.17-3.22 (1H, m), 3.41-3.59 (2H, m), 4.06-4.15 (2H, m), 4.25-4.34 (1H, m), 4.48-4.50 (1H, m), 4.65 (1H, q, *J* = 6.9 Hz), 5.23 (1H×1/2, d, *J* = 7.1 Hz), 5.27 (1H×1/2, d, *J* = 8.6 Hz), 7.02 (1H, d, *J* = 7.8 Hz), 7.19-7.33 (5H, m);

¹³C NMR (126 MHz, CDCl₃) δ 14.1, 19.7, 19.8, 20.0, 21.7, 25.0, 27.4, 28.2, 28.3, 30.7, 37.3, 39.1,
39.5, 40.3, 40.4, 42.3, 42.7, 46.3, 47.3, 53.2, 60.2, 60.5, 60.5, 60.9, 63.3, 76.7, 77.0, 77.3, 79.7,
80.0, 126.9, 127.4, 128.5, 128.8, 128.9, 129.3, 129.3, 135.4, 135.5, 136.3, 155.1, 155.2, 169.5,
169.9, 171.2, 171.2, 171.3, 171.8, 177.8;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₃₇N₃O₆Na 498.2575; Found 498.2569.

3i: $[\alpha]^{23}_{D}$ -104.4 (*c* 0.80, CHCl₃);

IR (neat) 3307, 2978, 2932, 1733, 1684, 1644, 1521, 1497, 1446, 1367, 1249, 1167, 1027, 865, 754, 701 cm⁻¹;

¹H NMR (500 MHz, CDCl₃, 4:1 mixture of rotamers) δ 1.14 (3H×4/5, d, *J* = 7.0 Hz), 1.17 (3H×1/5, d, *J* = 7.0 Hz), 1.38 (s, 9H), 1.82-2.31 (m, 4H), 2.76-3.63 (m, 6H), 4.01-4.08 (m, 2H), 4.28-4.33 (1H×1/5,m), 4.55 (1H, d, *J* = 7.5 Hz), 4.70 (1H×4/5, q, *J* = 7.3 Hz), 5.24-5.39 (m, 2H), 7.15-7.35 (m, 10H), 7.63 (1H×4/5, d, *J* = 8.0 Hz), 8.11 (1H×1/5, d, *J* = 7.7 Hz);

¹³C NMR (126 MHz, CDCl₃) δ 13.99, 14.04, 21.7, 25.0, 27.2, 28.2, 28.3, 30.2, 38.9, 39.1, 40.2,

40.5, 46.2, 47.3, 49.9, 51.0, 53.2, 54.2, 60.2, 60.5, 60.6, 60.9, 79.7, 80.4, 126.4, 126.6, 126.9, 127.3, 127.4, 127.5, 128.5, 128.5, 128.6, 128.9, 129.3, 129.3, 135.4, 136.3, 140.5, 141.3, 155.1, 155.8, 169.7, 169.9, 170.6, 170.7, 170.8, 172.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₀H₃₉N₃O₆Na 560.2731; Found 560.2738.

3j: $[\alpha]^{18}_{D}$ -21.0 (*c* 0.50, CHCl₃);

IR (neat) 3309, 2962, 2933, 2872, 1681, 1629 1452, 1392, 1367, 1246, 1166, 1100, 1052, 1002, 875, 754, 701 cm⁻¹;

¹H NMR (500 MHz, CDCl₃) δ 1.37 (9H, s), 1.84-1.92 (2H, m), 2.17-2.22 (1H, m), 2.82-3.14 (5H, m), 3.30-3.37 (1H, m), 3.51-3.57 (1H, m), 4.48-4.64 (2H, m), 4.86 (1H, dt, *J* = 8.1, 4.7 Hz), 4.95-5.13 (4H, m), 5.23 (1H, d, *J* = 8.8 Hz), 7.09 (1H, d, *J* = 7.5 Hz), 7.18-7.34 (15H, m); ¹³C NMR (126 MHz, CDCl₃) δ 21.9, 24.9, 27.6, 28.3, 30.8, 36.2, 39.2, 39.3, 46.5, 47.2, 48.9, 49.2, 53.2, 60.0, 60.5, 61.1, 61.9, 66.8, 67.5, 79.7, 126.8, 127.4, 128.2, 128.2, 128.3, 128.4, 128.4, 128.5, 128.6, 128.8, 129.3, 129.4, 133.6, 135.1, 135.3, 136.3, 155.1, 170.3, 170.4, 170.6, 170.8, 171.5, 171.7, 177.0;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₇H₄₃N₃O₈Na 680.2942; Found 680.2927.

3k: $[\alpha]^{18}_{D}$ –28.1 (*c* 0.48, CHCl₃);

IR (neat) 3310, 3029, 2975, 2878, 1733, 1707, 1640, 1524, 1498, 1447, 1390, 1365, 1291, 1248,

1171, 1082, 999, 867, 751, 699 cm⁻¹;

¹H NMR (500 MHz, CDCl₃, 1:1 mixture of rotamers) δ 1.18 (3H×1/2, d, *J* = 6.7 Hz), 1.22 (3H×1/2, d, *J* = 6.7 Hz), 1.38 (9H×1/2, s), 1.41 (9H×1/2, s), 1.82-2.08 (3H, m), 2.25-2.29 (1H, m), 2.45-2.60 (2H, m), 2.85-3.20 (2H, m), 3.36-3.60 (2H, m), 4.23-4.38 (1H, m), 4.47 (1H, d, *J* = 7.8 Hz), 4.64 (1H, q, *J* = 7.0 Hz), 5.07-5.14 (2H, m), 5.23-5.27 (1H, m), 6.99 (1H, m), 7.19-7.33 (10H, m);

¹³C NMR (126 MHz, CDCl₃) δ 19.8, 20.0, 21.7, 24.9, 27.4, 28.2, 28.3, 30.7, 39.0, 39.4, 40.3, 42.3, 42.8, 46.3, 47.2, 53.2, 54.1, 60.2, 60.9, 66.2, 66.3, 76.7, 77.0, 77.3, 79.7, 80.1, 126.9, 127.4, 128.1, 128.2, 128.2, 128.4, 128.5, 128.8, 129.3, 129.3, 135.6, 136.3, 155.1, 169.6, 169.9, 171.0, 171.1, 171.1, 171.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₀H₃₉N₃O₆Na 560.2731; Found 560.2749.

³l: $[\alpha]^{19}_{D}$ -31.7 (*c* 1.26, CHCl₃);

IR (neat) 3308, 3030, 2976, 1683, 1645, 1520, 1507, 1497, 1455, 1365, 1248, 1165, 1027, 752, 699 cm⁻¹;

¹H NMR (500 MHz, CDCl₃, 4:1 mixture of rotamers) δ 1.40 (9H, s), 1.83-2.31 (4H, m), 2.82-3.61 (6H, m), 4.27-4.32 (1H×1/5, m), 4.53-4.55 (1H×4/5, m), 4.66 (1H×4/5, dd, *J* = 15.2, 7.2 Hz), 4.99-5.09 (2H, m), 5.20-5.31 (1H+2H×1/5, m), 5.39 (1H×4/5, dd, *J* = 14.5, 6.6 Hz), 7.14-7.34 (15 H, m), 7.60 (1H×4/5, d, *J* = 8.2 Hz), 8.08 (1H×1/5, d, *J* = 7.4 Hz);

¹³C NMR (126 MHz, CDCl₃) δ 21.7, 25.0, 27.2, 28.3, 28.3, 30.2, 39.0, 39.1, 40.1, 40.5, 46.2, 47.3, 50.0, 51.0, 53.2, 54.2, 60.2, 60.9, 66.3, 66.4, 76.6, 79.7, 80.4, 126.4, 126.6, 126.9, 127.4, 127.4,

127.6, 128.0, 128.1, 128.2, 128.5, 128.5, 128.7, 128.9, 129.3, 129.3, 135.4, 135.5, 135.6, 136.3, 140.3, 141.1, 155.1, 155.9, 169.8, 169.9, 170.5, 170.6, 170.8, 172.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₄₁N₃O₆Na 622.2888; Found 622.2912.

3m: $[\alpha]^{19}_{D}$ -56.3 (*c* 0.64, CHCl₃);

IR (neat) 3414, 3315, 3027, 2973, 2876, 1714, 1655, 1516, 1498, 1455, 1391, 1366, 1269, 1248, 1170, 1098, 1047, 1027, 906, 870, 752, 699 cm⁻¹;

¹H NMR (500 MHz, CDCL₃, 1:1 mixture of rotamers) δ 0.82-0.91 (6H, m), 1.16-1.61 (13H, m), 1.83-2.26 (4H, m), 2.45-2.62 (2H, m), 2.83-2.93 (1H, m), 3.02 (1H×1/2, dd, *J* = 13.9, 6.1 Hz), 3.14-3.20 (1H×1/2, m), 3.39-3.60 (2H, m), 4.27-4.34 (3H×1/2, m), 4.44-4.46 (1H×1/2, m), 4.64 (1H×1/2, q, *J* = 7.8 Hz), 5.02-5.17 (2H, m), 5.28 (1H×1/2, d, *J* = 8.3 Hz), 6.93 (1H×1/2, d, *J* = 8.8 Hz), 7.17-7.38 (m, 10H), 7.49 (1H×1/2, d, *J* = 9.3 Hz);

¹³C NMR (126 MHz, CDCl₃) & 21.6, 21.8, 22.1, 22.8, 23.1, 24.9, 25.0, 27.4, 28.2, 28.3, 30.5, 38.8,
39.0, 39.2, 39.4, 42.7, 43.1, 44.5, 45.1, 46.4, 47.3, 53.2, 54.1, 60.2, 60.9, 66.2, 66.3, 79.7, 80.2,
126.8, 127.4, 128.1, 128.2, 128.2, 128.3, 128.4, 128.5, 128.8, 129.3, 129.3, 135.7, 135.9, 136.3,
155.1, 155.6, 169.8, 170.0, 171.2, 171.3, 171.4, 171.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₃H₄₅N₃O₆Na 602.3201; Found 602.3228.

Boc-homoPhe-Pro-OBn

To a solution of Boc-homoPhe-OH (279 mg, 0.999 mmol) and H-Pro-OBn·HCl (290 mg, 1.20 mmol) in MeCN (4.0 mL) were added PyBrop (606 mg, 1.30 mmol) and *i*Pr₂NEt (512 μ L3.00 mmol) The mixture was stirred for 3 h, quenched with diluted NaOH, extracted with EtOAc, washed with diluted HCl and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified using column chromatography (Hexane:AcOEt = 90 : 10 then 80 : 20) to afford Boc-homoPhe-Pro-OBn (460 mg, 0.986 mmol, 99%):

 $[\alpha]^{23}_{D}$ –40.2 (*c* 2.30, CHCl₃);

IR (neat) 3309, 2975, 1747, 1705, 1647, 1520, 1497, 1456, 1365, 1248, 1168, 1046, 1024, 871, 750, 699 cm⁻¹;

¹H NMR (500 MHz, CDCl₃) δ 1.46 (s, 9H), 1.81-2.23 (6H, m), 2.65-2.75 (2H, m), 3.34-3.38 (1H, m), 3.54-3.58 (1H, m), 4.40-4.47 (1H, m), 4.53-4.62 (1H, m), 5.11 (1H, d, *J* = 12.2 Hz), 5.18 (1H, d, *J* = 12.3 Hz), 5.34 (1H, d, *J* = 8.6 Hz), 7.17-7.36 (10H, m)

¹³C NMR (126 MHz, CDCl₃) δ 14.1, 21.0, 24.8, 28.3, 28.9, 31.2, 34.7, 46.6, 51.1, 58.8, 60.3, 66.8, 79.6, 125.9, 128.1, 128.2, 128.3, 128.4, 128.5, 128.5, 135.5, 141.2, 155.5, 171.0, 171.6;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{27}H_{34}N_2O_5Na$ 489.2360; Found 489.2353.

Boc-homoPhe-Pro-OH

To a solution of Boc-homoPhe-Pro-OBn (300 mg, 0.643 mmol) in AcOEt (5.00 mL) was added Pd-C (5 wt% Pd on carbon, 30.0 mg) at room temperature under Ar atmosphere. The mixture was stirred for 16 h under H₂ atmosphere, filtered through celite pad, and concentrated *in vacuo* to give Boc-homoPhe-Pro-OH (225 mg, 0.598 mmol, 93%), which was employed directly in the next reaction.

 $[\alpha]^{23}_{D}$ –45.0 (*c* 2.10, CHCl₃);

IR (neat) 3309, 2977, 1714, 1646, 1615, 1497, 1454, 1392, 1367, 1249, 1167, 1048, 1025, 912, 870, 754, 701, 666 cm⁻¹;

¹H NMR (500 MHz, CDCl₃) δ 1.44 (9H, s), 1.90-2.16 (6H, m), 2.67-2.71 (2H, m), 3.30-3.36 (1H, m), 3.57 (1H, q, *J* = 6.3 Hz), 4.44-4.46 (1H, m), 4.55 (1H, t, *J* = 5.2 Hz), 5.51 (1H, d, *J* = 8.7 Hz), 7.15-7.27 (5H, m);

¹³C NMR (126 MHz, CDCl₃) δ 14.1, 21.0, 24.7, 28.2, 28.3, 28.4, 31.2, 34.3, 47.0, 51.1, 59.0, 60.4, 79.8, 126.0, 128.3, 128.4, 128.5, 141.0, 155.6, 171.3, 172.3, 174.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₀H₂₈N₂O₅Na 399.1890; Found 399.1885.

3n: $[\alpha]^{23}_{D}$ -32.7 (*c* 1.94, CHCl₃);

IR (neat) 3312, 2956, 1714, 1683, 1644, 1521, 1497, 1455, 1366, 1249, 1169, 1047, 1024, 868, 751, 699 cm⁻¹;

¹H NMR (500 MHz, CDCl₃) δ 0.86 (6H, d, *J* = 6.6 Hz), 1.21-1.27 (1H, m), 1.40-1.47 (1H, m), 1.45 (9H, s), 1.55-1.59 (1H, m), 1.84-2.04 (5H, m), 2.25 (1H, t, *J* = 8.5 Hz), 2.44-2.53 (2H, m), 2.66-2.76 (2H, m), 3.27-3.31 (1H, m), 3.46-3.49 (1H, m), 4.25-4.30 (1H, m), 4.42-4.52 (2H, m), 4.98 (1H, d, *J* = 12.3 Hz), 5.05 (1H, d, *J* = 12.3 Hz), 5.31 (1H, d, *J* = 8.7 Hz), 6.94 (1H, d, *J* = 9.0 Hz), 7.15-7.36 (10H, m);

¹³C NMR (126 MHz, CDCl₃) δ 21.9, 22.9, 24.9, 27.5, 28.3, 31.5, 34.7, 39.1, 43.1, 44.2, 46.9, 51.2,
60.0, 66.2, 79.6, 126.0, 128.2, 128.39, 128.46, 128.47, 128.60, 135.6, 140.9, 155.5, 170.2, 171.3,
172.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₄H₄₇N₃O₆Na 616.3357; Found 616.3342.

5a: $[\alpha]^{27}_{D}$ –81.1 (*c* 2.55, CHCl₃);

IR (neat) 3268, 2975, 2931, 2881, 1696, 1604, 1587, 1522, 1449, 1381, 1297, 1258, 1162, 1142, 1118, 10086, 918, 756, 699 cm⁻¹;

¹H NMR (500 MHz, CDCl₃) see appendix because of rotamer;

¹³C NMR (126 MHz, CDCl₃) see appendix because of rotamer;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₃₂N₂O₅Na 475.2203; Found 475.2205.

5b: [α]²⁹_D –63.1 (*c* 1.56, CHCl₃);

IR (neat) 3308, 3021, 2975, 2878, 1736, 1697, 1522, 1497, 1455, 1391, 1366, 1255, 1162, 1122, 1088, 977, 919, 752, 699 cm⁻¹;

¹H NMR (500 MHz, CDCl₃, 1.5:1 mixture of rotamers) δ 1.38 (9H×1.5/2.5, s), 1.50 (9H×1/2.5, s), 1.92-2.35 (4H, m), 3.45-3.80 (2H, m), 4.28-4.30 (1H×1.5/2.5, m), 4.58-4.66 (1H×1/2.5, m) 5.33 (2H, s), 7.02-7.11 (1H, m), 7.32-7.44 (5H, m), 7.49-7.61 (1H, m), 8.05-8.12 (1H, m), 8.72-8.80 (1H, m), 11.54 (1H×1.5/2.5, s), 11.60 (1H×1/2.5, s);

¹³C NMR (126 MHz, CDCl₃) & 23.8, 24.3, 28.0, 28.2, 28.4, 30.5, 31.5, 46.8, 47.1, 62.1, 62.7, 66.7,
67.0, 80.1, 80.3, 115.2, 120.0, 120.3, 122.5, 122.6, 128.1, 128.3, 128.4, 128.6, 130.7, 130.9, 134.6,
134.7, 135.4, 141.1, 154.2, 167.6, 172.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₈N₂O₅Na 447.1890; Found 447.1901.

Settlement and Mortality Test with Cyprids

Effects of peptides $3a \sim 3g$ on settlement and mortality of cyprids after 48 h exposure. Rate of settlement of cyprids (closed circles) and mortality (closed squares) in different concentrations were plotted. Data plotted are representative means \pm SD of 3 replicates. The data points that are not joined to a line indicate the percentage settlement and mortality in filtered seawater diluted to 80 % by deionized water (control).

Effects of peptides $3h \sim 3n$, 5a, 5b and CuSO₄ on settlement and mortality of cyprids after 48 h exposure. Rate of settlement of cyprids (closed circles) and mortality (closed squares) in different concentrations were plotted. Data plotted are representative means \pm SD of 3 replicates. The data points that are not joined to a line indicate the percentage settlement and mortality in filtered seawater diluted to 80 % by deionized water (cont.).

¹H and ¹³C NMR Spectra

3b

3c

3d

3e

3f

3g

3h

3j

3k

31

3m

3n

Boc-homoPhe-Pro-OH

5a

5b