Appendix A. Electronic Supplementary Material

Multifunctional buried interface modification for efficient and stable SnO₂-

based perovskite solar cells

Rui Wu,^a Junhua Meng,^{*a} Yiming Shi,^a Zhengchang Xia,^{b,c} Chunxia Yan,^a Lisheng Zhang,^a Wenkang Liu,^a Jinliang Zhao,^a Jinxiang Deng^a and Xingwang Zhang^{b,c}

- ^a School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.
 - R. China E-mail: jhmeng@bjut.edu.cn
- ^b Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- ^c Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Fig. S1. DLS measurements of the dispersion of pristine SnO₂ and H-SnO₂.

Fig. S2. The UPS spectra of (a) pristine SnO_2 and (b) H-SnO₂ film, where the secondary electron cutoff and the Fermi edge are focused.

Fig. S3. The UV-vis absorption spectra of the pristine SnO_2 and $H-SnO_2$ film, from which the bandgap of the samples is estimated to be 3.94 eV.

Fig. S4. The surface potential profiles of the pristine SnO_2 and $H-SnO_2$ films taken at the positions marked by white line in the KPFM images (Fig. 1e and 1f).

Fig. S5. Electronic DOS of (a) SnO₂, (b) H-SnO₂.

Fig. S6. (a) The UPS spectra of perovskite film, (b) UV-vis absorption spectra of the perovskite films deposited on SnO_2 ETLs.

Fig. S7. XPS core-level spectra of (a) N 1s and (b) Na 1s for SnO_2 and H-SnO₂ film.

Fig. S8. Plane-averaged charge density difference of $SnO_2/HEDTA$ interface, the cyan and yellow regions correspond to the charge depletion and accumulation regions, respectively.

Fig. S9. I 3d core-level spectra for the PbI_2 films coated on SnO_2 and H- SnO_2 ETLs.

Fig. S10. The grain size distribution diagram of perovskite films coated on SnO_2 and H- SnO_2 ETLs.

Fig. S11. AFM images of perovskite films deposited on (a) SnO_2 and (b) H-SnO₂, the scan area is 5×5 μ m².

Fig. S12. Contact angle measurements of DMF on (a) SnO_2 and (b) H-SnO₂ film.

Fig. S13. Steady-state PL spectra of the perovskite films deposited on the SnO_2 and H- SnO_2 substrates.

Fig. S14. Statistic diagram of (a) PCE, (b) V_{OC} , (c) J_{SC} and (d) FF for the PSCs based on SnO_2 ETL with different concentration of HEDTA-3Na. The statistical data were collected from 30 cells for each concentration.

Fig. S15. *J-V* curves measured by the reverse scan and forward scan of the PSCs based on pristine SnO_2 and H-SnO₂ ETLs, the photovoltaic parameters are listed in Table S2.

Fig. S16. Long-term stability of (a) V_{OC} , (b) J_{SC} and (c) FF (unencapsulated devices) for the PSCs with SnO_2 and H-SnO₂ ETLs.

Samples	A ₁ (%)	τ_{1} (ns)	$\begin{array}{c} A_2 \\ (\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c} \end{subarray} \\ (\begin{subarray}{c} \end{subarray} \end{subarray} \end{array} \end{array}$	τ_2 (ns)	$ au_{ave}$ (ns)
SnO ₂	85.6	79.2	14.4	383	215.5
H-SnO ₂	85.2	46.8	14.8	183.3	101.8

Table S1. The TRPL spectra parameters of perovskite based on SnO_2 and H- SnO_2 ETLs.

Table S2. Photovoltaic parameters for PSCs made with SnO_2 or $H-SnO_2$ under reverse and forward scan directions.

Samples	Scan direction	$V_{\rm OC}$ (V)	$J_{ m SC}~(m mA~cm^{-2})$	FF (%)	PCE (%)	HI
SnO ₂	Reverse Forward	1.106 1.102	24.26 24.01	77.57 76.13	20.82 20.16	0.032
H-SnO ₂	Reverse Forward	1.156 1.154	24.72 24.67	80.86 80.02	23.11 22.78	0.014

Table S3. EIS parameters of devices based on SnO_2 and H- SnO_2 ETLs.

Sample	$\mathrm{R}_{\mathrm{tr}}\left(\Omega ight)$	$R_{rec}(\Omega)$
SnO ₂	580.6	3172
H-SnO ₂	317.2	6021