1 Gallium-introduced bimetal sites in indium-gallium metal organic framework for

2 efficient electrocatalytic reduction of carbon dioxide into formate

3

4 Yang Gao, He Xiao*, Xiaofang Ma, Zhizhu Yue, Chunmei Liu, Man Zhao, Li Zhang,

5 Junming Zhang, Ergui Luo, Tianjun Hu, Baoliang Lv, Jianfeng Jia* and Haishun Wu*

6 Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of

7 Education, The School of Chemical and Material Science, Shanxi Normal University,

8 Taiyuan 030000, China.

9 * Corresponding author

10

E-mail: gaoyang9808@126.com (Y. Gao); xiaohe200808@sxnu.edu.cn (H. Xiao); 11 1739266658@qq.com (X.F. Ma); yuezhizhu712@163.com (Z.Z. Yue); 12 lcm1553540@163.com (C.M. Liu); zm03030225@sxnu.edu.cn (M. Zhao); 13 zhangli603606@163.com (L. Zhang); zhangjunming@sxnu.edu.cn (J.M. Zhang); 14 luogui1991@sxnu.edu.cn (E.G. Luo); hutj@sxnu.edu.cn (T.J. Hu); lvbl@sxnu.edu.cn 15 (B.L. Lv); jiajf@dns.sxnu.edu.cn (J.F. Jia); wuhs@dns.sxnu.edu.cn (H.S. Wu). 16

- 17
- 18

19 1. Chemicals and materials

Gallium Trinitrate Hydrate (III) (Ga(NO₃)₃ xH₂O, 99.99%) and Indium (III) 20 Nitrate Hydrate (In(NO₃)₃ xH₂O, 99.9%) were purchased from Adamas-beta. P-21 Phthalic acid (PTA, 99%) was purchased from Aladdin Scientific Corp. N, N-22 dimethylformamide (DMF, 99.5%) was purchased from Tianjin Beichen Fangzheng 23 Reagent Factory (China). Anhydrous ethanol (C₂H₅OH, 99.7%) was purchased from 24 Guangfu Technology Co., Ltd. Potassium bicarbonate (KHCO₃, 99.5%) was purchased 25 from Tianjin Kemiou Chemical Reagent Co., Ltd (China). Deionized water (DI water, 26 18.25 M Ω) produced by a UPR-II-100 L water purification system was used in this 27 work. All the chemical reagents are analytical grade and used as received without 28 further purification. 29

1 2. The turnover frequency (TOF, s⁻¹)

2 TOF of the electrocatalyst was calculated according to the formula:

$$TOF = \frac{n \div t}{m_{cat} \times \omega \div M_{In}}$$

n: the molar yield of formate, mol.

t: operation time for eCO_2RR , s.

 m_{cat} : catalyst mass in the electrode, g.

 ω : In loading in the catalyst, wt%

 M_{In} : atomic mass of In, 114.82 g·mol⁻¹.

1 3. Supplemental figures and tables

2 Fig. S1 LSV curve of the solution after ion exchange.

The test utilized a mixture of 0.5 M KHCO₃ (25 mL) solution and the solution after ion exchange (5 mL) as the electrolyte. A Pt electrode served as the counter electrode, Ag/AgCl as the reference electrode, and a glassy carbon electrode as the working electrode. The results indicated that the reduction peak of In(III) to In(0) appeared near -0.3 V, while the reduction peak of Ga(III) to Ga(0) appeared near -0.6 V.

10 Fig. S2 The standard curve for the formate product.

1 Fig. S3 Gas-chromatography of gas product produced for eCO_2RR .

3 Fig. S4 The standard curves for $\rm H_2$ and CO product.

4

5

7 InGaMOFs with different In/Ga ratios.

Fig. S7 The pore size distribution calculated by NLDFT method for GaMOF, InMOF, and InGaMOF(5:1).

10 Fig. S8 The N_2 adsorption-desorption isotherms of InGaMOF(5:1) and the physically

14 Fig. S11 High resolution XPS spectra for GaMOF, InMOF, and InGaMOFs with different

15 In/Ga ratios.; (a) Ga 3d + In 4d, (b) In 3d, and (c) O 1s.

- 2 Fig. S15 FEs of product distributions and current density at different applied potentials of
- 3 physical mixture sample with In-MOF and Ga-MOF.
- 4

- 6 Fig. S16 XRD patterns for InGaMOF(5:1) during the eCO_2RR test.
- 7

Fig. S18 C_{dl} of GaMOF, InMOF, and InGaMOF(5:1).

10 Fig. S20 The *in-situ* FTIR apparatus diagram.

Element		Sample volume	Mass fraction	
	Ga	2 mL	0.002%	
	In	2 mL	0.0136%	

1 Table S1 Mass fractions of In and Ga in the solution after ion exchange.

2

3 Table S2 The amount of reactant material

	InGaMOF(0.5:1)	InGaMOF(5:1)	InGaMOF(10:1)	InMOF
GaMOF / mg	200	200	200	0
In(III) / mmol	0.5	5	10	3
PTA / mmol	3.6	3.6	3.6	3.6

4

5 Table S3 Molar ratios of In and Ga in the InGaMOFs.

	InGaMOF(0.5:1)		InGaMOF(5:1)		InGaMOF(10:1)	
	Feed	ICP-OES	Feed	ICP-OES	Feed	ICP-OES
In/Ga	0.5:1	0.64:1	5:1	6.52:1	10:1	8.21:1

6

7 **Table S4** The BET values of MOFs.

	InMOF	GaMOF	InGaMOF(5:1)	InMOF+GaMOF
BET Specific Surface Area / m ² g ⁻¹	407.03	801.88	1509.72	726.79

8 The physically mixed 200 mg InMOF and 20 mg GaMOF is noted as InMOF+GaMOF. The In/Ga

9 mole ratios of InGaMOF(5:1) and InMOF+GaMOF are equal.

10

11 Table S5 Summary of formate production efficacy of different In-based
12 electrocatalysts reported in literature.

Catalysts	FE _{formate}	Potential (V vs.RHE)	Ref
InGaMOF(5:1)	93.0%	-0.5	This work
InO _x -O _v	90.2%	-0.7	1
Sn doped In ₂ O ₃	87.0%	-0.8	2
InN-C	92.2%	-0.8	3
mesoporous-In	90.0%	-1.05	4

Cu _x In _y -OH	85.0%	-1.1	5
In-N-C	80.0%	-0.8	6
In/ZnO@C	90.0 %	-1.2	7
In@InO _x	94.0%	-1.0	8
In ₂ S ₃ -RGO	91.0%	-1.2	9
C@In2O3@Bi50	90.0%	-1.36	10
F doped In(OH) ₃	92.5%	-1.2	11
In@MWCNTs	90.0%	-1.0	12
In ₂ O ₃ -O _v	91.2%	-1.27	13
InOOH-O _v	92.6%	-0.85	14

2 References

- J. Zhang, R. Yin, Q. Shao, T. Zhu and X. Huang, *Angew. Chem. Int. Ed.*, 2019, 58,
 5609-5613.
- 5 2. H.-R. M. Jhong, U. O. Nwabara, S. Shubert-Zuleta, N. S. Grundish, B. Tandon, L.
- 6 C. Reimnitz, C. M. Staller, G. K. Ong, C. A. Saez Cabezas, J. B. Goodenough, P.

7 J. A. Kenis and D. J. Milliron, *Chem. Mater.*, 2021, **33**, 7675-7685.

- 8 3. P. Hou, X. Wang and P. Kang, *Journal of CO₂ Utilization*, 2021, 45, 1014499 101457.
- 10 4. L. Xiao, X. Liu, R. Zhou, T. Zhang, R. Zhou, B. Ouyang, E. Kan, P. J. Cullen, K.
- 11 Ostrikov and X. Tu, *Energy Convers. Manag.*, 2021, **231**, 113847-113857.
- Q. Xie, G. O. Larrazábal, M. Ma, I. Chorkendorff, B. Seger and J. Luo, *J. Energy Chem.*, 2021, 63, 278-284.
- 14 6. P. Lu, X. Tan, H. Zhao, Q. Xiang, K. Liu, X. Zhao, X. Yin, X. Li, X. Hai, S. Xi, A.
- 15 T. S. Wee, S. J. Pennycook, X. Yu, M. Yuan, J. Wu, G. Zhang, S. C. Smith and Z.
- 16 Yin, ACS Nano, 2021, **15**, 5671-5678.
- 17 7. X. Teng, Y. Niu, S. Gong, M. Xu, X. Liu, L. Ji and Z. Chen, *Mater. Chem. Front*,
 2021, 5, 6618-6627.
- 19 8. Y. Yang, J.-j. Fu, T. Tang, S. Niu, L.-B. Zhang, J.-n. Zhang and J.-S. Hu, Chinese

- 1 J. Catal., 2022, **43**, 1674-1679.
- H. Ning, X. Fei, Z. Tan, W. Wang, Z. Yang and M. Wu, ACS Appl. Nano Mater,
 2022, 5, 2335-2342.
- 4 10. J. Zhai, Y. Hu, M. Su, J. Shi, H. Li, Y. Qin, F. Gao and Q. Lu, Small, 2023, 19,
- 5 2206440-2206451.
- 6 11. X. An, S. Li, Z. Yang, X. Ma, X. Hao, A. Abudula and G. Guan, *Chem. Eng. J.*,
 7 2023, 455, 140720-140729.
- 8 12. L. Xiao, R. Zhou, T. Zhang, X. Wang, R. Zhou, P. J. Cullen and K. Ostrikov,
 9 Energy Environ. Mater., 2023, 0, e12656.
- 10 13. Q. Cheng, M. Huang, L. Xiao, S. Mou, X. Zhao, Y. Xie, G. Jiang, X. Jiang and F.
- 11 Dong, ACS Catal., 2023, **13**, 4021-4029.
- 12 14. F. Ye, S. Zhang, Q. Cheng, Y. Long, D. Liu, R. Paul, Y. Fang, Y. Su, L. Qu, L.
- 13 Dai and C. Hu, *Nat. Commun.*, 2023, **14**, 1-14.
- 14