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Characterization of the materials: 

The crystal structure of the was examined by X-ray diffraction (XRD, Rigaku, 

Ultima IV with D/teX Ultra with CuKα radiation). The morphological and detailed 

structure characterization was investigated by scanning electron microscopy (SEM, 

JSM-6610L, Japan) and transmission electron microscopy (TEM, FEI TECNAI G2 

F20, America). The surface elemental states of as-synthesized materials were 

characterized by X-ray photoelectron spectra (XPS, Kratos Axis Ultra DLD, Japan). 

Electrochemical Measurements: 

The CR2032-type cells were assembled in the glove box fulfilled by argon. The 

working electrodes were prepared by mixing the as-prepared products, super P, and 

PVDF at a weight ratio of 7:2:1. The slurry was casted onto the Cu foil and completely 
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dried in a vacuum oven at 50 °C overnight. The average mass loading was about 1.2-1.4 

mg cm-2. For half-cell testing, K slice was used as the counter electrode, the glass fiber 

film (Whatman GF/D) was employed as a separator and the electrolyte was composed 

of 3.0 M KFSI in DME. The galvanostatic discharge-charge tests were measured on the 

battery testing systems (Neware, Shenzhen). Cyclic voltammetry (CV) and EIS 

measurements were performed on a CHI660E electrochemical workstation (ChenHua, 

Shanghai). 

Theoretical Computation: 

The Vienna Ab Initio Simulation Package was used to implement all the DFT 

calculations.1 The exchange-correlation interaction between electrons was described by 

the generalized gradient approximation (GGA) in the strategy of Perdew-Burke-

Ernzerhof (PBE) functional. A cutoff energy of 520 eV was applied for the plane-wave 

expansion of the electronic wave functions. The self-consistency field calculations were 

conducted with an energy convergence of 10-4 eV and force convergence of 10-2 eV/Å.2 

For all of the surfaces explored, the Brillion-zone integration was sampled by adopting 

a 3×3×1 Gamma-centered k-point mesh. Bi2S3 (211), and Bi2O3 (200) surfaces were 

applied as stable surfaces for adsorption calculations.



(a) (b) (c)

Figure S1. SEM image of a) c-Bi2O3, b) c-Bi2S3/c-Bi2O3, and c) a-Bi2S3/c-Bi2O3.

Figure S2. XPS survey spectrum of a-Bi2S3/c-Bi2O3, c-Bi2S3/c-Bi2O3, and c-Bi2O3.

 

Figure S3. Mott–Schottky plot.



Figure S4. Rate performance of a-Bi2S3/c-Bi2O3 electrode compared with those of the 
previously reported alloy anodes for KIBs.

Figure S5. Discharge capacity from the embedding/conversion plateau (denoted as Ι), 
alloying plateau (denoted as Π).
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Figure S6. Galvanostatic charge–discharge profiles of a) c-Bi2S3/c-Bi2O3 and b) c-
Bi2O3 at various rates.



Figure S7. XRD pattern with different degrees of sulfidation. 

(a) (b)

Figure S8. SEM image of a,b) a-Bi2S3/c-Bi2O3-1 and a-Bi2S3/c-Bi2O3-3.
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Figure S9. a,c)  CV curves of a-Bi2S3/c-Bi2O3-1 and a-Bi2S3/c-Bi2O3-3 at 0.1mV s-1. 
b,d) Charge/discharge profiles of a-Bi2S3/c-Bi2O3-1 and a-Bi2S3/c-Bi2O3-3 at 50 mA 

g-1.
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Figure S10. a) Cycling performance at 200 mA g-1. b) Rate capability.
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Figure S11. EIS curves of a) c-Bi2S3/c-Bi2O3 and b) c-Bi2O3 at different temperatures.

Figure S12. The comparison of activation energies.

Figure S13. Calculated K+ diffusion coefficient at different potassiation states during 
the charging



(a) (b)

Figure S14. EIS curves of a) c-Bi2S3/c-Bi2O3 and b) c-Bi2O3 electrodes after different 
cycles at 300 mA g-1.

Fig S15. The equivalent circuit of Nyquist.
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Figure S16. a) The corresponding b values in linear regression. b) The composition of 
pseudocapacitive characteristics in the CV curve at a scan rate of 0.5 mV s−1.
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Figure S17. a,c) CV curves of c-Bi2S3/c-Bi2O3 and c-Bi2O3 at different sweeping rates. 
b,d) The contribution ratio of pseudocapacitive characteristics of c-Bi2S3/c-Bi2O3 and 

c-Bi2O3 in the CV curve at a scan of 0.5 mV s−1.
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Figure S18. a,b) The contribution  ratio of surface-controlled and diffusion-
controlled behaviors of c-Bi2S3/c-Bi2O3 and c-Bi2O3 at different scan rates.
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Figure S19. Ex-situ XRD patterns of a-Bi2S3/c-Bi2O3 electrode during the first 
discharge and charge.
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Figure S20. XRD patterns of a-Bi2S3/c-Bi2O3 electrode after 300 cycles.
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Figure S21. The post-mortem SEM images of a) a-Bi2S3/c-Bi2O3, b) c-Bi2S3/c-Bi2O3 
and c) c-Bi2O3.
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Figure S22. Top views of the optimized structure a) a-Bi2S3/c-Bi2O3 and b) c-Bi2S3/c-
Bi2O3.

Figure S23. The initial and final state of K-atom diffusion in a-Bi2S3/c-Bi2O3.



Figure S24. The initial and final state of K-atom diffusion in c-Bi2S3/c-Bi2O3.
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