Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Construction of Bi-based Amorphous/Crystalline Heterostructures for Efficient Potassium Ion Storage

Hankun Yang^{#a}, Xiaoqing Zhang^{#a}, Wei Li^a, Yufang Chen^{*b}, Xiaolei Tang^a, Ying Wu^a, Qiliang Wei^{*ac}, Xianyou Wang^a, Hongbo Shu^{*a}

^a National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory for Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China;

^b College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410000, China

^c Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P.R. China

[#]These authors contributed equally to this work.

Characterization of the materials:

The crystal structure of the was examined by X-ray diffraction (XRD, Rigaku, Ultima IV with D/teX Ultra with CuKα radiation). The morphological and detailed structure characterization was investigated by scanning electron microscopy (SEM, JSM-6610L, Japan) and transmission electron microscopy (TEM, FEI TECNAI G2 F20, America). The surface elemental states of as-synthesized materials were characterized by X-ray photoelectron spectra (XPS, Kratos Axis Ultra DLD, Japan). *Electrochemical Measurements:*

The CR2032-type cells were assembled in the glove box fulfilled by argon. The working electrodes were prepared by mixing the as-prepared products, super P, and PVDF at a weight ratio of 7:2:1. The slurry was casted onto the Cu foil and completely

^{*} Corresponding author: Tel.: +86 73158292060; fax: +86 73158292061.

Email: hongboshu@xtu.edu.cn (H. Shu), chenyufang@nudt.edu.cn (Y. Chen), qiliang.wei@nbut.edu.cn (Q.

dried in a vacuum oven at 50 °C overnight. The average mass loading was about 1.2-1.4 mg cm⁻². For half-cell testing, K slice was used as the counter electrode, the glass fiber film (Whatman GF/D) was employed as a separator and the electrolyte was composed of 3.0 M KFSI in DME. The galvanostatic discharge-charge tests were measured on the battery testing systems (Neware, Shenzhen). Cyclic voltammetry (CV) and EIS measurements were performed on a CHI660E electrochemical workstation (ChenHua, Shanghai).

Theoretical Computation:

The Vienna Ab Initio Simulation Package was used to implement all the DFT calculations.¹ The exchange-correlation interaction between electrons was described by the generalized gradient approximation (GGA) in the strategy of Perdew-Burke-Ernzerhof (PBE) functional. A cutoff energy of 520 eV was applied for the plane-wave expansion of the electronic wave functions. The self-consistency field calculations were conducted with an energy convergence of 10^{-4} eV and force convergence of 10^{-2} eV/Å.² For all of the surfaces explored, the Brillion-zone integration was sampled by adopting a $3 \times 3 \times 1$ Gamma-centered k-point mesh. Bi₂S₃ (211), and Bi₂O₃ (200) surfaces were applied as stable surfaces for adsorption calculations.

Figure S1. SEM image of a) c-Bi₂O₃, b) c-Bi₂S₃/c-Bi₂O₃, and c) a-Bi₂S₃/c-Bi₂O₃.

Figure S2. XPS survey spectrum of $a-Bi_2S_3/c-Bi_2O_3$, $c-Bi_2S_3/c-Bi_2O_3$, and $c-Bi_2O_3$.

Figure S3. Mott–Schottky plot.

Figure S4. Rate performance of a-Bi₂S₃/c-Bi₂O₃ electrode compared with those of the previously reported alloy anodes for KIBs.

Figure S5. Discharge capacity from the embedding/conversion plateau (denoted as I), alloying plateau (denoted as Π).

Figure S6. Galvanostatic charge–discharge profiles of a) $c-Bi_2S_3/c-Bi_2O_3$ and b) $c-Bi_2O_3$ at various rates.

Figure S7. XRD pattern with different degrees of sulfidation.

Figure S8. SEM image of a,b) a-Bi₂S₃/c-Bi₂O₃-1 and a-Bi₂S₃/c-Bi₂O₃-3.

Figure S9. a,c) CV curves of a-Bi₂S₃/c-Bi₂O₃-1 and a-Bi₂S₃/c-Bi₂O₃-3 at 0.1mV s⁻¹. b,d) Charge/discharge profiles of a-Bi₂S₃/c-Bi₂O₃-1 and a-Bi₂S₃/c-Bi₂O₃-3 at 50 mA g^{-1} .

Figure S10. a) Cycling performance at 200 mA g⁻¹. b) Rate capability.

Figure S11. EIS curves of a) c-Bi₂S₃/c-Bi₂O₃ and b) c-Bi₂O₃ at different temperatures.

Figure S12. The comparison of activation energies.

Figure S13. Calculated K⁺ diffusion coefficient at different potassiation states during the charging

Figure S14. EIS curves of a) $c-Bi_2S_3/c-Bi_2O_3$ and b) $c-Bi_2O_3$ electrodes after different cycles at 300 mA g⁻¹.

Fig S15. The equivalent circuit of Nyquist.

Figure S16. a) The corresponding b values in linear regression. b) The composition of pseudocapacitive characteristics in the CV curve at a scan rate of 0.5 mV s⁻¹.

Figure S17. a,c) CV curves of c-Bi₂S₃/c-Bi₂O₃ and c-Bi₂O₃ at different sweeping rates. b,d) The contribution ratio of pseudocapacitive characteristics of c-Bi₂S₃/c-Bi₂O₃ and c-Bi₂O₃ in the CV curve at a scan of 0.5 mV s⁻¹.

Figure S18. a,b) The contribution ratio of surface-controlled and diffusioncontrolled behaviors of $c-Bi_2S_3/c-Bi_2O_3$ and $c-Bi_2O_3$ at different scan rates.

Figure S19. Ex-situ XRD patterns of a-Bi₂S₃/c-Bi₂O₃ electrode during the first discharge and charge.

Figure S20. XRD patterns of $a-Bi_2S_3/c-Bi_2O_3$ electrode after 300 cycles.

Figure S21. The post-mortem SEM images of a) a-Bi₂S₃/c-Bi₂O₃, b) c-Bi₂S₃/c-Bi₂O₃ and c) c-Bi₂O₃.

Figure S22. Top views of the optimized structure a) a-Bi₂S₃/c-Bi₂O₃ and b) c-Bi₂S₃/c-Bi₂O₃.

Figure S23. The initial and final state of K-atom diffusion in a-Bi₂S₃/c-Bi₂O₃.

Figure S24. The initial and final state of K-atom diffusion in c-Bi₂S₃/c-Bi₂O₃.

References

- 1. P. E. Blochl, *PHYSICAL REVIEW B*, 1994, **50**, 17953-17979.
- 2. M. Yu and D. R. Trinkle, JOURNAL OF CHEMICAL PHYSICS, 2011, **134**.