Supporting Information

Renewable Aromatic Hydrocarbons from Waste Cooking Oil over Hierarchical Imidazole Supported Zeolites

Bhanu Joshi,^{a,b} Omvir Singh, ^{a,e}*Ankit Agrawal,^{a,b} Neha Dhiman,^{a,b} Bhanu Prasad Vempatapu,^c Navin Gopinathan,^d Anjan Ray,^{a,b} and Bipul Sarkar^{*a,b}

^a Upstream & Wax Rheology Division, CSIR- Indian Institute of Petroleum, Haridwar Road, Dehradun-248005, India

Email: <u>bsarkar@iip.res.in</u>

^b Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad-201002, India

° Analytical Sciences Division, CSIR- Indian Institute of Petroleum, Haridwar Road, Dehradun-248005, India

^d Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India

^e Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT)-Jais, Amethi, Uttar Pradesh 229304, India

Table of contents

Figures		Page no
Figure S1	Pore diameter of fresh and spent ZnCr/ISZ catalyst.	3
Figure S2	SEM images of (a,b)fresh and (c,d) spent ZnCr/ISZ catalyst	3
Figure S3	EDX spectrum of ZnCr/ISZ catalyst	4
Figure S4	EDX spectrum of spent ZnCr/ISZ catalyst	4
Figure S5	TEM image reduced ZnCr/ISZ catalyst	5
Figure S6	TEM image reduced ZnCr/ISZ catalyst	5
Figure S7	Elemental mapping of spent ZnCr/ISZ catalyst	6
Figure S8	FTIR spectra of fresh and spent ZnCr/ISZ catalyst	6
Figure S9	FT-IR of fresh and spent ZnCr/ISZ catalyst	7
Figure S10	TPR profile of Zn/ISZ catalyst.	7

Figure S11	XP spectra of C1s and O1s of fresh and spent ZnCr/ISZ catalyst	8
Figure S12	Thermogravimetric analysis (TGA) data of (a) fresh, (b) spent ZnCr/ISZ catalyst and (c) pure ISZ support. Note:	8
	spent catalyst was recovered after 4h time-on-stream.	
Figure S13	Survey scan of fresh and spent ZnCr/ISZ catalyst	9
Figure S14	Recyclability of ZnCr/ISZ (imidazole supported zeolite) after several cycle.	9
Figure S15	GC- DHA chromatogram of liquid product (as per ASTM D6730), indentation has been done using the relative RT.	10
Tables		Page no
Table S1	Brønsted and Lewis acidic strength of different imidazole supported zeolite catalyst	12
Table S2	XPS peak fitting data for Zn, Al, Cr and Si (Calculated by using Origin software)	12-13
Table S3	Detail hydrocarbon analysis (GC-DHA) data of the liquid product, as per ASTM D6730	14
Table S4	Compositions of the gaseous product as per ASTM D7833 (GC-RGA) over ZnCr/ISZ catalyst.	15
Table S5	Products distribution from aromatisation of waste cooking oil over a different loading of Zn and Co supported ISZ zeolite catalyst	16
Table S6	Table for aromatics distribution over time-on-stream	17
Table S7	Recent Literature survey on waste cooking oil into valuable chemicals	18
Table S8	Py-probe data of 12C Methyl oleate with catalyst	19-25
Table S9	Pyro-probe data of 12C methyl linoleate with catalyst	26-28
Table S10	Pyro-probe data of ¹² C methyl palmitate with catalyst	29
References		30

Figure S1. Pore diameter of fresh and spent ZnCr/ISZ catalyst.

Figure S2: SEM images of (a,b)fresh and (c,d) spent ZnCr/ISZ catalyst

Figure S3: EDX spectrum of ZnCr/ISZ catalyst

Figure S4. EDX spectrum of spent ZnCr/ISZ catalyst

Figure S5: TEM image reduced ZnCr/ISZ catalyst

Figure S6: TEM image reduced ZnCr/ISZ catalyst

Figure S7. Elemental mapping of spent ZnCr/ISZ catalyst

Figure S8. FTIR spectra of fresh and spent ZnCr/ISZ catalyst

Figure S9. FT-IR of fresh and spent ZnCr/ISZ catalyst

Figure S10. TPR profile of Zn/ISZ catalyst.

Figure S11. XP spectra of C1s and O1s of fresh and spent ZnCr/ISZ catalyst

Figure S12. Thermogravimetric analysis (TGA) data of (a) fresh, (b) spent ZnCr/ISZ catalyst and (c) pure ISZ support. Note: spent catalyst was recovered after 4h time-on-stream.

Figure S13. Survey scan of fresh and spent ZnCr/ISZ catalyst

Figure S14. Recyclability of ZnCr/ISZ (imidazole supported zeolite) after several cycle.

Figure S15. GC- DHA chromatogram of liquid product (as per ASTM D6730), indentation has been done using the relative RT.

Mass balance

WCO Conversion = (weight of converted WCO)/ (weight of the WCO reactant) \times 100%

Yield of liquid products = (C atoms in liquid products/C atoms in the starting reactant) \times 100%

Weight of WCO reactant(g)=5.46

Weight of liquid product formed(g) =4.89

Total Liquid Yield= (4.89/5.4) *100= 90.5%

Weight of gas product formed=0.1265

Total gases yield= (0.1265/5.46) *100= 2.31%

Weight of solid (carbon deposit on catalyst) =0.0049

 $Carbon \ Balance \ (in \ wt \ \%) = \frac{Wt. \ of \ liquid + Gas + Solid}{Wt \ of \ UCO} \times 100\% = \frac{5.0214}{5.46} \times 100\% = 92 \pm 3\%$

Carbon deposition rate= (Carbon deposition/ Catalyst amount*Reaction time) = (0.0049/1*4)= $0.0012=1.20*10^{-3}$

Catalyst	Brønsted acidic strength (mmol/g)	Lewis acidic strength (mmol/g) ^b	B/L	Total acidity (B+L) (mmol/g)		
ISZ	0.36	0.12	3.0	0.48		
20Zn/Z	0.28	0.14	2.0	0.42		
20Zn3Cr/Z	0.26	0.22	1.08	0.46		
20Zn3Cr2B/Z	0.25	0.29	0.86	0.54		
20Zn3Cr2Al/Z	0.27	0.23	1.17	0.50		
20Zn3Cr2S/Z	0.24	0.28	0.85	0.52		
20Zn3Cr2P/Z	0.26	0.25	1.04	0.51		
20Zn3Cr/Z ^a	0.29	0.14	2.07	0.43		

Table S1: Brønsted and Lewis acidic strength of different imidazole supported zeolite catalyst

Bronsted and Lewis acidic site can be calculated using Py-Ir, a spent catalyst: recovered after 4 hr

time on stream , b Standard deviation for acidity \pm 0.5

Table S2. XPS peak fitting data for Zn, Al, Cr and Si (Calculated by using Origin software)

Zn-2p

Metal	Peak	Peak Position	Peak Area	% Fitting
Fresh Catalyst	•			
Zn (fitted)	2p3/2	1019.5945	2910.0049	
	2p1/2	1042.5989	1455.51973	
	Cumulative	-	4365.52463	
Zn Raw	2p3/2	1019.57256	2946.71447	96.63 %
	2p1/2	1042.64566	1570.74468	
	Cumulative	-	4517.45915	
Spent Catalyst	•	1 1		
Zn (fitted)	2p3/2	1019.28512	5397.22324	
	2p1/2	1042.28386	2675.92126	
	Cumulative	-	8073.1445	
Zn Raw	2p3/2	1019.27508	5510.90957	99.42%
	2p1/2	1042.36089	2608.66946	
	Cumulative	-	8119.57903	

Mictal I cak I cak I usition I cak Ai ca 70 Fitting	Metal	Peak	Peak Position	Peak Area	% Fitting
---	-------	------	----------------------	-----------	-----------

Fresh Catalyst				
Al (fitted)	Peak 1	75.62312	15955.84004	
	Peak 2	74.48118	13242.16732	
	Cumulative	-	29168.00736	
Al Raw	Raw	-	30,018.3463	97.16 %
Spent Catalyst	•	•		·
Al (fitted)	Peak 1	75.77273	13964.51059	
	Peak 2	74.55898	15584.44958	
	Cumulative		29,548.96017	
Al Raw	Raw data		29,819.80916	99.09%

Cr-2p

Metal	Peak	Peak Position	Peak Area	% Fitting
Fresh Catalyst		•		
	Peak 1	575.80361	337.02512	
	Peak 2	585.50407	168.6196	
Cr-2p	Peak 3	578.05476	265.42322	
	Peak 4	587.74517	124.01506	99.07%
	Peak 5	582.80445	174.34465	
	Cumulative	-	1069.42765	
Cr-2p (Raw)	Raw data	-	1079.44794	
Spent Catalyst				
	Peak 1	575.8802	368.80394	
	Peak 2	585.58485	182.72314	
Cr-2p	Peak 3	578.24806	232.09816	
	Peak 4	587.94773 115.0		99.61%
	Peak 5	582.80635	173.65441	
	Cumulative	-	1072.30447	
Cr-2p (Raw)	Raw data	-	1076.50028	

Si-2p

Metal	Peak	Peak Position	Peak Area	% Fitting
Fresh Catalyst				
	Peak 1	101.85179	3223.13608	
Si-2p	Peak 2	102.57831	1136.02628	98.33%
	Cumulative	-	4359.16236	
Si-2p (Raw)	Raw data	-	4433.09267	
Spent Catalyst				
	Peak 1	101.54266	1915.32251	
Si-2p	Peak 2	102.41532	2318.04999	95.42%
	Cumulative	-	4233.3725	
Si-2p (Raw)	Raw data	-	4436.23349	

Carbon	Saturat	tes		Unsatu	rated	_	Οχνσ	
No	Cyclic	Iso	Normal	Cyclic	N + Iso Aromatics		unknown	Total
4		0.01			0.10			0.11
5		0.13	0.07	0.02	0.25			0.47
6		0.28	0.18	0.21	0.09	15.3		16.06
7	0.02	0.05	0.48		0.25	35.6		36.4
8		0.04	0.57			29.1		29.71
9	0.5	0.7				4.3		5.5
10	1.3	0.12	0.09			3.0		4.51
11		0.47	0.09			1.2	0.36	2.21
12	0.03	0.08	0.4			1.0	0.59	2.1
13			0.11				0.69	0.80
14			0.50				0.50	1.0
15			0.08				0.70	0.78
16							0.35	0.35
17								
18+								
Total	1.85	1.88	2.66	0.23	0.69	89.5	3.19	100

Table S3. Detail hydrocarbon analysis (GC-DHA) data of the liquid product, as per ASTM D6730

Sr. No.	Product name	Carbon No.	Product (in %)	Total product formed (in mg)
1	Hydrogen	H ₂	8.9	0.0018
2	Carbon dioxide	C ₁	3.1	0.0092
3	Carbon monoxide	C_1	2.6	0.014
4	Methane	C ₁	4.7	0.023
5	Ethane	C ₂	1.18	0.0061
6	Ethylene	C ₂	11.57	0.0307
7	Propylene	C ₃	22.96	0.0256
8	Iso Butane	C_4	2.38	0.0532
9	n butane	C_4	2.04	0.0012
10	Iso-Butene	C_4	0.75	0.0056
11	2-Pentene	C ₅	1.82	0.0023
12	2-Methyl-2-Butene	C ₅	1.39	0.0009

 Table S4. Compositions of the gaseous product as per ASTM D7833 (GC-RGA) over ZnCr/ISZ

 catalyst.

Table S5. Products distribution from aromatisation of waste cooking oil over a different loading of Zn

 and Co supported ISZ zeolite catalyst

S/N	Catalyst	Total	Total	Total			Produ	ıct sele	ctivity		
		Conver	aromati	(C6-	Benzen	Toluen	0-	m-	p-	total	Ethyl-
		sion	cs	C8)	e	e	xylen	xylen	xylen	xylene	benzen
		(%)	(%)	(%)			e	e	e		e
1	Zn ₅ /ISZ	82.3	85.3	51.7	7.1	26.2	2.5	7.0	7.1	16.6	1.8
2	Zn ₁₀ /ISZ	85.1	84.0	57	8.2	28.4	3.2	7.6	7.6	18.4	2.0
3	Zn ₂₀ /ISZ	89.0	91.0	62.6	9.0	30.7	3.8	8.2	8.5	20.5	2.4
4	Zn ₂₀ Cr ₁ /ISZ	89.6	84.6	58.7	10.3	28.9	2.4	7.5	8.0	17.9	1.6
5	Zn ₂₀ Cr ₂ /ISZ	90.3	87.3	61.6	10.9	30.1	2.8	7.9	7.9	18.6	2.0
6	Zn ₂₀ Cr ₃ /ISZ	92.3	89.5	65.9	12.0	32.3	3.2	9.5	7.1	19.8	1.8
Read	ction condition	s: catalys	st wt-1 g (pelletize	ed); reacti	on temp.	-430°C	; LHS	V-1.5 h	-1; GHSV	-1200
h-1;	h-1; time-after 4h. * relative standard deviation (RSD) is $\pm 5\%$										

Time	Aromatics	Mono	Mono	Di-	Poly-	Benzene	Toluene	Х	ylen	es	Ethyl
	(Total)	aromatics	(Branched)	aromatics	aromatics			0	m	р	benzene
4	89.5	65.9	9.2	8.3	6.1	12	32.3	3.2	9.5	7.1	1.8
8	87.2	55	10.3	12.2	9.7	7.2	25.3	3.2	9.2	8	2.1
12	81.5	45.8	12.0	13.5	10.2	5.1	22.3	3	7.4	6.2	1.8
16	74.2	39.8	6.5	15.1	12.8	4.8	19.2	3	6.2	5.1	1.5
20	71.2	37.6	3.6	15.9	14.1	4.2	18.5	2.8	5.8	4.8	1.5

Table S6. Table for aromatics distribution over time-on-stream

Feed	Catalysts	Temperature (°C)	Reactor and reaction condition	Aromatic selectivity/ yield (%)	Stability	Ref
Nonedible Oils	Zn/HZSM-5	515°C	Catalytic fixed bed	58.56%	3-4 hour	1, 2
Waste cooking oil	HZSM-5 with (CoO, NiO, CaO)	350-550°C	Microwave- assisted catalytic pyrolysis	702.20 mg/ml	-	3, 4
Waste cooking oil	HZSM-5	450°C	Microwave pyrolysis	-	60 min	4, 5
Lignin and waste cooking oil	ZSM-5	500 °C	pyro probe reactor o	82.6%	30-60 min	6, 7
Non-edible oil cake's	Al/SBA-15	400 °C,	Hydrothermal reactor at high pressure -25 bar (H2)	19.5%	-	8,9
Rubber seed oil	ZSM-5	550 °C	Fixed bed reactor	78.6%	15 min	10
Camelina (sativa) seed oil	Zn, Na/ZSM-5	500°C	Fixed bed reactor	6.2 %	60 min	11
Used cooking oil (UCO)	Zn,Cr supported Imidazole catalyst	400-550°C	fixed bed continuous flow reactor	89.5%	4 h	Our work

Table S7. Recent Literature survey on waste cooking oil into valuable chemicals

We have compared the catalyst performance with the other catalyst reported in the literature. All the literature reports microwave-assisted pyrolysis of WCO or used WCO along with bio-oil, lignin, plastic etc., for microwave/catalytic fast co-pyrolysis. As an industrial intervention, microwave-assisted pyrolysis of WCO faces challenges related to heating uniformity, energy efficiency, and capital costs and thus requires further research. The use of co-pyrolysis is complex and in a very nascent research stage; therefore needs more time to mature. Thus, the direct conversion of WCO to aromatics is advantageous; in terms of C6-C8 selectivity, it shows the best transformation ever reported from WCO.

Ret.	Area	Compound
time	(%)	
1.905	0.06	CH3C(O)O(CH2)3CH=CH2
2.179	0.12	Formic acid, hexyl ester
2.262	0.21	2-Hexene
2.337	0.18	2-Propenoic acid, methyl ester
2.55	0.16	1,3-Cyclohexadiene
2.644	0.08	Cyclopentene, 3-methyl-
2.747	0.28	Benzene
3.03	0.24	Cyclopentane, 1,2-dimethyl-
3.13	0.48	Heptane
3.319	0.08	Methyl 3-butenoate
3.434	0.06	Methyl 11-(2-cyclopenten-1-yl)undecanoate
3.709	0.24	3-Methylenecyclohexene
3.794	0.04	Bicyclo[4.1.0]hept-2-ene
3.909	0.13	Cyclopentane, ethylidene-
4.109	1.03	Toluene
4.21	0.03	Cyclopentane, 1,3-bis(methylene)-
4.462	0.2	Cyclopropane, pentyl-
4.63	0.83	Hexanal
4.683	0.03	1,3,5-Cycloheptatriene
4.754	0.06	4-Pentenoic acid, methyl ester
4.847	0.04	Silicone caulk
5.007	0.06	Methyl valerate
5.04	0.05	1,3-Octadiene
5.347	0.06	1,3-Cyclohexadiene, 5,6-dimethyl-
5.403	0.06	1-Propylcyclopentene
5.518	0.04	1-Ethyl-2-trifluoroacetoxycyclohexane
5.678	0.41	Ethylbenzene
5.892	0.93	p-Xylene
6.155	0.12	2-Heptanone
6.21	0.25	Cyclopropane, 1-methyl-2-pentyl-
6.256	0.13	Cyclohexanone
6.313	0.08	3-Nonene, (E)-

Table S8. Py-probe data of ¹²C Methyl oleate with catalyst

6.384	0.29	Heptanal
6.424	0.07	2-Cyclopenten-1-one, 2-methyl-
6.453	0.07	2-Nonene, (E)-
6.539	0.13	5-Hexenoic acid, methyl ester
6.764	0.2	Hexanoic acid, methyl ester
6.805	0.07	1,3-Nonadiene, (E)-
6.91	0.03	2-Cyclohexen-1-one
7.191	0.05	Cyclopentene, 1-butyl-
7.315	0.16	Benzene, propyl-
7.354	0.05	2-Heptenal, (Z)-
7.451	0.07	3-Oxatricyclo[3.2.2.0(2,4)]nonane
7.511	0.32	Benzene, 1-ethyl-4-methyl-
7.697	0.03	1-Octen-3-one
7.771	0.06	1,1,3,3,5,5,7,7-Octamethyl-7-(2-methylpropoxy)tetrasiloxan-1-ol
7.803	0.06	Phenol
7.961	0.18	1-Decene
8.037	0.22	Mesitylene
8.162	0.22	Octanal
8.349	0.37	6-Heptenoic acid, methyl ester
8.51	0.38	Heptanoic acid, methyl ester
8.549	0.03	5-Decyne
8.674	0.03	(E)-4-Oxohex-2-enal
8.749	0.15	Indane
8.907	0.09	1H-Indene, 1-chloro-2,3-dihydro-
8.992	0.03	Benzoic acid, cyclohexylmethyl ester
9.084	0.43	Cyclohexane, 1,3-butadienylidene-
9.22	0.03	Ethyl (Z)-non-3-enyl carbonate
9.398	0.06	3-Cyclopentylpropionic acid, 2-methylphenyl ester
9.518	0.03	Acetic acid, 2,4,4-trimethylpentyl ester
9.555	0.03	Bicyclo[2.2.2]octane, 2-methyl-
9.634	0.16	E-11,13-Tetradecadien-1-ol
9.676	0.06	4-Nonenal, (E)-
9.719	0.16	5-Undecene, (E)-
9.858	0.29	Nonanal
9.983	0.22	3-Octenoic acid, methyl ester, (Z)-

10.178	0.92	Octanoic acid, methyl ester
10.209	0.13	Cycloundecene(E)
10.285	0.04	7-Tetradecen-1-ol, (Z)-, TMS derivative
10.377	0.04	2,5-Dimethylphenyl methyl carbinol
10.479	0.03	1H-Indene, 2,3-dihydro-5-methyl-
10.518	0.05	5-Undecene, 3-methyl-, (E)-
10.552	0.03	p-Toluic acid, 2,6-dimethylnon-1-en-3-yn-5-yl ester
10.649	0.07	1H-Indene, 3-methyl-
10.734	0.31	2-Decyn-1-ol
10.825	0.04	Cyclooctylidene-(2-phenylaziridin-1-yl)amine
11.096	0.03	(3E,5Z)-1,3,5-Undecatriene
11.201	0.24	1-Dodecene
11.274	0.06	4-Undecene, (E)-
11.415	0.1	Decanal
11.529	0.19	8-Nonenoic acid, methyl ester
11.659	0.18	Nonanoic acid, methyl ester
11.715	0.25	4-Dodecen-1-ol
11.875	0.06	2-Ethyl-2,3-dihydro-1H-indene
11.984	0.05	4-Oxononanal
12.036	0.03	11-Tridecyn-1-ol
12.088	0.04	5,7-Dodecadiene, (E,E)-
12.27	0.4	2-Decenal, (E)-
12.324	0.09	13,16-Octadecadiynoic acid, methyl ester
12.375	0.13	6-Nonynoic acid, methyl ester
12.753	0.16	Formic acid, 10-chlorodecyl ester
12.851	0.1	Naphthalene, 1-methyl-
13.1	0.15	10-Hydroxydecanoic acid, methyl ester
13.178	0.25	Decanoic acid, methyl ester
13.256	0.05	Methyl 8-oxooctanoate
13.69	0.14	2-Undecenal
13.74	0.11	2-Undecenal
13.855	0.15	2-Undecenal
14.545	0.29	Nonanoic acid, 9-oxo-, methyl ester
14.57	0.23	Nonanoic acid, 9-oxo-, methyl ester
14.652	0.7	Nonanoic acid, 9-oxo-, methyl ester
L		

14.748	0.58	Cyclopropanebutanoic acid, 2-[[2-[[2-[(2-
		pentylcyclopropyl)methyl]cyclopropyl]methyl]cyclopropyl]methyl]-,
		methyl ester
15.715	0.99	Dodecanoic acid, methyl ester
15.74	0.38	Dodecanoic acid, methyl ester
15.796	0.54	Dodecanoic acid, methyl ester
15.829	1.42	Dodecanoic acid, methyl ester
16.42	0.08	7-Hexadecenoic acid, methyl ester, (Z)-
16.517	0.28	9-Hexadecenoic acid, methyl ester, (Z)-
16.655	0.03	7-Hexadecenoic acid, methyl ester, (Z)-
16.854	0.04	Tridecanoic acid, methyl ester
16.9	0.03	12-Tridecynoic acid, methyl ester
17.005	0.04	Dodecanoic acid, 10-methyl-, methyl ester
17.595	0.23	Tridecanoic acid, 12-methyl-, methyl ester
17.715	0.42	Methyl 12-oxo-9-dodecenoate
17.745	0.1	9-Octadecenoic acid (Z)-, methyl ester
17.891	0.98	Methyl myristoleate
18.133	3.35	Methyl tetradecanoate
18.173	0.72	Methyl tetradecanoate
18.225	0.9	Tridecanoic acid, 12-methyl-, methyl ester
18.246	0.54	Methyl tetradecanoate
18.3	2.27	Methyl tetradecanoate
18.587	0.12	Tridecanoic acid, 4,8,12-trimethyl-, methyl ester
18.62	0.06	Tridecanoic acid, 4,8,12-trimethyl-, methyl ester
18.835	1.51	Pentadecanoic acid, methyl ester
18.865	0.27	Tridecanoic acid, 12-methyl-, methyl ester
18.9	0.38	Pentadecanoic acid, methyl ester
18.921	0.27	Tetradecanoic acid, 12-methyl-, methyl ester
18.945	1.19	Tridecanoic acid, 12-methyl-, methyl ester
19.092	2.18	Pentadecanoic acid, methyl ester
19.325	0.89	Pentadecanoic acid, methyl ester
19.986	2.62	9-Hexadecenoic acid, methyl ester, (Z)-
20.295	5.8	Hexadecanoic acid, methyl ester
20.357	1.52	Hexadecanoic acid, methyl ester
20.414	0.6	Tridecanoic acid, methyl ester

	20.435	3.28	Z-11-Tetradecen-1-ol difluoroacetate
	20.625	1.59	Hexadecanoic acid, methyl ester
	20.793	0.2	Hexadecanoic acid, 14-methyl-, methyl ester
	20.955	0.89	Cyclopropaneoctanoic acid, 2-hexyl-, methyl ester
	21.026	0.68	Cyclopropaneoctanoic acid, 2-hexyl-, methyl ester
	21.063	0.27	Pentacosanoic acid, methyl ester
	21.1	0.36	11-Hexadecenoic acid, 15-methyl-, methyl ester
	21.159	0.63	10-Undecenoic acid, methyl ester
	21.195	0.22	Methyl 18-methylicosanoate
	21.242	0.44	cis-10-Heptadecenoic acid, methyl ester
	21.27	0.26	cis-10-Heptadecenoic acid
	21.314	0.53	1,19-Eicosadiene
	21.366	0.31	Hexadecanoic acid, 14-methyl-, methyl ester
	21.405	1.35	Hexadecanoic acid, 14-methyl-, methyl ester
	22.245	6.37	9-Octadecenoic acid, methyl ester, (E)-
	22.34	1.77	9-Octadecenoic acid (Z)-, methyl ester
	22.491	2.97	9-Octadecenoic acid, methyl ester, (E)-
	22.57	1.8	9-Octadecenoic acid, methyl ester, (E)-
	22.797	5.47	9-Octadecenoic acid, methyl ester, (E)-
	22.851	1.39	9-Octadecenoic acid, methyl ester, (E)-
	22.884	1.01	6-Octadecenoic acid, methyl ester, (Z)-
	22.91	0.75	9-Octadecenoic acid, methyl ester, (E)-
	22.95	1.23	9-Octadecenoic acid, methyl ester, (E)-
	23.047	4.17	9-Octadecenoic acid, methyl ester, (E)-
	23.124	0.33	Methyl 9-cis,11-trans-octadecadienoate
	23.17	0.61	1-Tetradecanol
	23.208	1.18	1-Tetradecanol
	23.293	0.44	Methyl 9-cis,11-trans-octadecadienoate
	23.348	0.52	Methyl hexadec-9-enoate
	23.426	0.03	Nonadecanoic acid, methyl ester
	23.529	0.06	8,11,14-Eicosatrienoic acid, (Z,Z,Z)-
	23.636	0.17	9-Octadecynoic acid, methyl ester
	23.685	0.09	Butanoic acid, 4-(2-hydroxycyclohexyl)-, methyl ester
	23.846	1.26	Oxiraneoctanoic acid, 3-octyl-, methyl ester, cis-
	23.994	1.56	Cyclopropaneoctanoic acid, 2-hexyl-, methyl ester
1			

24.053	0.44	Methyl 7-oxopentadecanoate
24.133	0.38	Methyl 18-methylnonadecanoate
24.245	0.03	1,2-Cyclohexanedicarboxylic acid, heptyl 4-methoxyphenyl ester
24.369	0.76	Cyclohexane, [6-cyclopentyl-3-(3-cyclopentylpropyl)hexyl]-
24.439	0.06	Pentanoic acid, 2-methyl-, anhydride
24.522	0.14	(1R,2R,3S,5R)-(-)-2,3-Pinanediol
24.605	0.04	9-Octadecenoic acid, methyl ester, (E)-
24.687	0.05	Octadecanoic acid, 9,10-dihydroxy-, methyl ester
24.871	0.14	Heptadeca-7,10-dione
24.988	0.3	Cedrol
25.095	0.04	1-Ethyltricyclo[5.2.1.1(2,6)]undec-8-en-11-ol
25.434	1.58	Cyclopropaneoctanoic acid, 2-octyl-, methyl ester
25.547	0.1	Docosanoic acid, methyl ester
25.735	0.03	trans-9-Octadecenoic acid, pentyl ester
25.774	0.03	11-Dodecen-1-ol difluoroacetate
26.032	0.03	Butyl 9,12-octadecadienoate
26.112	0.09	cis-11-Eicosenoic acid, methyl ester
26.279	0.03	Tricosanoic acid, methyl ester
26.46	0.04	Decyl oleate
26.517	0.05	Methyl 18-methylicosanoate
26.595	0.08	Benzene, 1-iodo-3-(trifluoromethyl)-
26.628	0.08	Oxalic acid, 2-ethylhexyl octadecyl ester
26.719	0.08	Oleic diethanolamide
26.781	0.07	(4aS,5S,8aS)-5-Isopentyl-1,1,4a-trimethyl-6-
		methylenedecahydronaphthalene
26.804	0.08	Triacontane
26.861	0.19	15-Tetracosenoic acid, methyl ester, (Z)-
27.023	0.03	Tetracosanoic acid, methyl ester
27.174	0.03	9-Octadecenoic acid (Z)-, hexadecyl ester
27.205	0.03	Methyl 18-methylicosanoate
27.275	0.03	2H-3,9a-Ethanocyclopent[b]oxocin-2-one, octahydro-5,5,7,11-
		tetramethyl-, (3S,6as,7R,9as,11R)-
27.3	0.04	Hexadecanoic acid, decyl ester
27.418	0.06	9-Octadecenamide, (Z)-
27.643	0.11	Squalene

28.103	0.03	Lubricant (grease)
28.216	0.11	Hexacosane, 1-iodo-
28.541	0.11	9-Octadecenoic acid (Z)-, octadecyl ester
28.598	0.04	Tetracontane-1,40-diol
28.628	0.04	13-Docosen-1-ol, (Z)-
28.741	0.05	Oleic anhydride
28.875	0.04	Triacontane, 1-bromo-
29.168	0.03	11-Hexacosyne
29.407	0.15	Docosanedioic acid, dimethyl ester
29.459	0.03	Nonacosan-14-one
29.559	0.06	Triacontane
29.883	0.03	Vitamin E
29.929	0.06	Cholesterol
30.049	0.03	Hexadecanoic acid, tetradecyl ester
30.216	0.05	1-Decanol, 2-hexyl-
30.308	0.05	Cholest-4-en-6-one
30.995	0.03	Cholest-4-en-3-one
31.044	0.08	16-Hentriacontanone
31.163	0.05	Dotriacontane
31.268	0.04	Cholest-7-en-3-ol, 14-methyl-, (3.beta.)-
31.382	0.03	E,E,Z-1,3,12-Nonadecatriene-5,14-diol
31.61	0.17	.gammaSitosterol
31.794	0.12	1-Decanol, 2-hexyl-
32.145	0.05	Olean-12-ene
33.175	0.09	Nonacosan-14-one
33.312	0.03	Dotriacontane
33.726	0.03	Oleyl oleate
33.92	0.08	9-Hexadecenoic acid, eicosyl ester, (Z)-
34.184	0.06	Hexadecanoic acid, octadecyl ester

Ret	Area,	Compound name
time	%	
1.883	0.4	2-Methyl-1-butene
2.188	0.23	1-Pentene, 2-methyl
2.276	0.63	2-Hexene
2.344	0.38	Allyl isocyanate
2.557	0.39	1,4-Cyclohexadiene
2.653	0.22	Cyclopentene, 4-methyl-
2.749	0.91	Benzene
3.03	0.15	1-Heptene
3.174	0.48	Cyclopropane, trimethylmethylene-
3.314	0.05	3-Ethylheptanoic acid
3.44	0.05	Cyclopentane, ethylidene-
3.7	0.23	3-Methylenecyclohexene
3.909	0.16	Cyclopentane, ethylidene-
4.093	2.15	Toluene
4.452	0.1	Cyclopropane, pentyl-
4.607	0.19	1-Heptanol, 2-propyl-
4.752	0.07	Cyclohexene, 3-ethyl-
5.303	0.11	2,4-Dimethyl-1-heptene
5.669	0.82	Benzene, 1,1'-[oxybis(methylene)]bis-
5.868	1.87	p-Xylene
6.202	0.26	Resin (Styrene, 2-EHA)
6.407	0.06	Spiro[4.4]nonan-1-one
6.45	0.06	4-Nonene
6.984	0.05	1-Undecene, 8-methyl-
7.309	0.32	Benzeneethanol, .alpha(phenylmethyl)-
7.414	0.23	Octane, 2,2,6-trimethyl-
7.5	0.69	m-Ethylaniline
7.952	0.08	1-Decene
8.02	0.3	2,6-Xylidine
8.11	0.12	m-Toluic acid, 3-phenylpropyl ester
8.318	0.19	E-10-Dodecen-1-ol propionate
8.484	0.06	1-Pentanol, 2-ethyl-4-methyl-

Table S9. Pyro-probe data of $^{12}\mathrm{C}$ methyl linoleate with catalyst

8.73	0.1	1H-Indole, 2,3-dihydro-
8.893	0.11	1H-Indene, 1-chloro-2,3-dihydro-
8.97	0.06	1,3-Benzodioxole, 3a,7a-dihydro-2,2,4-trimethyl-
9.069	0.4	Tricyclo[4.2.2.0(1,5)]dec-7-ene
9.627	0.16	5-Tetradecene, (E)-
9.697	0.05	Cyclohexane, 1,1-dimethyl-2-propyl-
9.83	0.09	Nonanal
9.955	0.1	E-10-Dodecen-1-ol propionate
10.168	0.12	Z-1,6-Undecadiene
10.531	0.09	4-(3-Pentyl)pyridine
10.623	0.09	1H-Indene, 1-methyl-
10.71	0.22	Diazodiamantane
11.18	0.25	2-Decanone
11.507	0.06	E-10-Dodecen-1-ol propionate
11.635	0.06	Nonanoic acid, methyl ester
11.695	0.13	6-Dodecyne
12.233	0.13	Bicyclo[3.3.1]nonan-3-ol, 7-methylene-
12.837	0.09	Naphthalene, 2-methyl-
13.691	0.07	3,7-Dimethylenebicyclo[3.3.1]nonane
14.761	0.09	1,5-Cyclododecadiene, (E,E)-
14.878	0.05	Cyclopentene, 1-octyl-
15.059	0.08	Bicyclo[3.3.1]nonan-3-ol, 7-methylene-
15.509	0.05	7,9-Di-tertbutyl-1-oxaspiro[4,5]deca-6,9-dien-8-one
16.017	0.11	9,12-Tetradecadien-1-ol, (Z,E)-
16.134	0.1	1,16-Hexadecanediol
16.298	0.05	4-Octylaniline
16.351	0.24	Bicyclo[3.1.0]hexan-3-ol, 4-methylene-1-(1-methylethyl)-, [1S-
		(1.alpha.,3.beta.,5.alpha.)]-
17.576	0.3	Bicyclo[3.3.1]nonan-3-ol, 7-methylene-
18.522	0.06	3-Eicosyne
19.815	0.06	.alphaPhellandrene, dimer
19.949	0.11	cis-13-Eicosenoic acid
20.91	0.15	cis-10-Heptadecenoic acid, methyl ester
20.955	0.3	cis-10-Heptadecenoic acid, methyl ester
21.05	0.17	cis-10-Nonadecenoic acid

21.15	0.37	cis-10-Heptadecenoic acid, methyl ester
22.454	44.32	Oxacyclohexadecan-2-one
22.521	5.51	Cyclopropaneundecanal, 2-nonyl-
22.722	18	Oleyl alcohol, trifluoroacetate
22.762	6.5	Tetradecanenitrile
22.832	2.55	Oleic Acid
22.904	0.37	Methyl 9-cis,11-trans-octadecadienoate
22.93	0.34	1-Dodecanol, 2-octyl-, acetate
22.99	0.88	Linoleic acid ethyl ester
23.046	0.34	18-Nonadecenoic acid
23.08	0.12	Tetrapentacontane, 1,54-dibromo-
23.201	0.07	10-Undecenoic acid, 2-methoxy-, methyl ester
23.546	0.25	4H-1,3-Benzodioxin-4-one, 2-(1,1-dimethylethyl)hexahydro-5-methyl-
		4a-(2-propenyl)-, [2s-(2.alpha.,4a.alpha.,5.beta.,8a.beta.)]-
23.587	0.19	Oxiraneoctanoic acid, 3-octyl-, methyl ester, cis-
23.627	0.14	Vinyl caprylate
23.698	0.24	Oxiraneoctanoic acid, 3-octyl-, methyl ester
23.759	0.89	2-Furanoctanoic acid, 5-hexyltetrahydro-, methyl ester
23.913	0.2	9-Hydroxypentadecanoic acid, methyl ester
24.162	0.66	Dodecane, 1,12-di(2-nitro-3-ethoxyphenoxy)-
24.274	0.1	Fumaric acid, 2-octyl tridec-2-yn-1-yl ester
24.371	0.07	Tricyclo[20.8.0.0(7,16)]triacontane, 1(22),7(16)-diepoxy-
24.577	0.05	Octadecanoic acid, 9,10-dihydroxy-, methyl ester
24.756	0.09	Heptadeca-7,10-dione
24.88	0.2	Epicedrol
25.183	0.05	Octadecanoic acid, 9,10-dihydroxy-, methyl ester
25.314	1.07	13-Docosenoic acid, methyl ester, (Z)-
27.376	0.06	9-Octadecenamide, (Z)-
31.578	0.06	(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-
		yl)-3-methoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,1

Ret	Area,	Compound name
time	%	
1.883	0.95	Propane, 1,2-dimethoxy-
2.19	0.13	Propanedioic acid, propyl-
2.274	0.76	Ethane, 1,2-diethoxy-
2.552	0.31	2-(1-Methylcyclopentyloxy)-tetrahydropyran
2.649	0.11	2-Propanamine, N,N-dimethyl-
2.743	0.78	Benzene
3.127	0.1	1,3-Bis(hydroxymethyl)urea
3.695	0.22	8-Nonyn-1-ol tetrahydropyran-2-yl ether
4.077	2.28	Mepivacaine
4.597	0.24	1,3-Bis(hydroxymethyl)urea
4.838	0.13	Cyclotrisiloxane, hexamethyl-
5.659	0.6	Piperidine, 1-ethyl-
5.843	2.63	2,3-Dihydro-6-hydroxy-3-oxo-2-(piperidinomethyl)pyridazine
6.197	0.13	2-(5-Amino-[1,3,4]thiadiazol-2-ylsulfanyl)-1-pyrrolidin-1-yl-
		ethanone
6.343	0.09	1-Nitro-2-propanol
7.301	0.17	3-Piperidino-1,2-propanediol
7.486	0.82	Ribitol, 1,3:4,5-di-O-(ethylboranediyl)-2-deoxy-
8.015	0.15	3,12-Dibora-2,4,11,13-tetraoxatricyclo[12.4.0.0(5,10)]octadecane,
		3,12-diethyl-
8.101	0.16	Ethanol, 2,2'-[methylenebis(thio)]bis-
9.058	0.29	Ribitol, 1,3:4,5-di-O-(ethylboranediyl)-2-deoxy-
9.619	0.11	d-Galactose oxime
9.824	0.13	Nonanal
10.702	0.1	Boroxin, ethyldimethyl-
11.186	0.14	1-Methoxy-3-(trimethylsilyloxymethyl)nonane
12.763	0.21	dl-Threitol
12.83	0.1	6-Methoxynicotinic acid
14.023	0.23	Methoxyamine, TBDMS derivative
15.243	0.1	Methoxyamine, TBDMS derivative
15.415	0.09	dl-Threitol
15.465	0.09	Methoxyamine, TBDMS derivative
L		

Table S10. Pyro-probe data of $^{12}\mathrm{C}$ methyl palmitate with catalyst

19.062	0.12	Propanoic acid, 2-(ethylthio)-, ethyl ester
20.255	50.02	Bis(dimethylamino)methylphosphine
20.365	6.55	Bis(dimethylamino)methylphosphine
20.45	1.73	Bis(dimethylamino)methylphosphine
20.49	2.24	O-Ethylhydroxylamine, TBDMS derivative
20.54	0.98	Bis(dimethylamino)methylphosphine
20.57	0.72	O-Ethylhydroxylamine, TBDMS derivative
20.605	0.78	O-Ethylhydroxylamine, TBDMS derivative
20.665	1.86	Bis(dimethylamino)methylphosphine
20.861	0.12	Bis(dimethylamino)methylphosphine
21.143	0.21	O-Ethylhydroxylamine, TBDMS derivative
21.898	18.84	cis-9-Octadecenoic acid, propyl ester
22.092	1.29	1-Methyl-1-(4-methylpentyl)oxy-1-silacyclobutane
22.252	0.18	9,12-Octadecadienoic acid (Z,Z)-, methyl ester
22.66	0.35	trans,trans-9,12-Octadecadienoic acid, propyl ester
23.406	0.09	Undec-10-ynoic acid, octadecyl ester
23.468	0.16	Methyl 2-hydroxydodecanoate
23.649	0.51	15-Tetracosenoic acid, methyl ester, (Z)-
24.084	0.35	2-Butyl-3-methyl-5-(2-methylprop-2-enyl)cyclohexanone
25.299	0.26	13-Docosenoic acid, methyl ester, (Z)-
26.53	0.13	1,1'-Biphenyl-3,4,4'-trimethoxy-6'-formyl-
29.896	0.16	Cholesterol

Reference

- 1. X. Liu, Y. Wu, J. Zhang, Y. Zhang, X. Li, H. Xia and F. Wang, ACS Omega, 2022, **7**, 18953-18968.
- 2. Q. Wu, Y. Wang, Y. Peng, L. Ke, Q. Yang, L. Jiang, L. Dai, Y. Liu, R. Ruan, D. Xia and L. Jiang, *Energy Conversion and Management*, 2020, **220**, 113124.
- 3. Q. Wu, Y. Wang, Y. Peng, L. Ke, Q. Yang, L. Jiang, L. Dai, Y. Liu, R. Ruan, D. Xia and L. Jiang, *Energy Conversion and Management*, 2020, **220**.
- 4. Y. Zeng, Y. Wang, Y. Liu, L. Dai, Q. Wu, M. Xia, S. Zhang, L. Ke, R. Zou and R. Ruan, *Science of The Total Environment*, 2022, **809**, 152182.
- 5. Y. Wang, Y. Zeng, L. Fan, Q. Wu, L. Zhang, J. Xiong, J. Zhang, R. Liao, K. Cobb, Y. Liu, R. Ruan and Y. Wang, *Fuel*, 2023, **351**.
- 6. L. Fan, R. Ruan, J. Li, L. Ma, C. Wang and W. Zhou, *Applied Energy*, 2020, **263**.
- 7. L. Fan, R. Ruan, J. Li, L. Ma, C. Wang and W. Zhou, *Applied Energy*, 2020, **263**, 114629.
- 8. D. Kumar and K. K. Pant, *Renewable Energy*, 2016, **95**, 43-52.
- 9. A. Ben Hassen Trabelsi, K. Zaafouri, W. Baghdadi, S. Naoui and A. Ouerghi, *Renewable Energy*, 2018, **126**, 888-896.
- 10. F. Wang, Y. Zheng, Y. Huang, X. Yang, G. Xu, J. Kang, C. Liu and Z. Zheng, *Journal of Analytical and Applied Pyrolysis*, 2017, **126**, 180-187.
- 11. X. Zhao, L. Wei, S. Cheng, Y. Cao, J. Julson and Z. Gu, *Applied Catalysis A: General*, 2015, **507**, 44-55.