Supporting Information for

The heterostructure CoFe@(Co_{0.5}Fe_{0.5})S@NCNT anchored on the

rice husk-based hierarchical porous carbon as a bifunctional cathode

catalyst for Zn-air batteries

Jin Yang^a, Jun Shi^b, Yupeng Wu^a, Huimin Liu^a, Zhiqiang Liu^a, Qinwen You^a, Xinxin Li^a, Linchuan Cong^a, Debo Liu^a, Fangbing Liu^a, Yue Jiang^d, Nan Lin^{*a}, Wenli Zhang^{c,e}, Haibo Lin^a

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
^b School of Chemical Engineering & New Energy Materials, Zhuhai College of Science and Technology, Zhuhai 519041, China
^c Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering & Light Industry, Guangdong University of Technology GDUT, Guangzhou 510006, China
^d Key Laboratory of Bionic Engineering of Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
^e Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China

* Corresponding authors: nanlin@jlu.edu.cn (Nan Lin*a)

Fig. S1 High-resolution XPS spectra of RHPC for (a) C 1s and (b) O 1s.

Fig. S2 SEM images of (a) CoFe@NC and (b) $(Co_{0.5}Fe_{0.5})S@NC$.

CoFe@NCNT/RHPC; (b) XRD of CoFe@NC and (Co_{0.5}Fe_{0.5})S@NC.

and

CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC for O 1s.

Fig. S5 The contents of various doped N and various doped O of CoFe@NCNT/RHPC and $CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC$.

Fig. S6 CV curves of prepared catalysts in (a) O_2 -saturated and (b) N_2 -saturated 0.1 M KOH at a scan rate of 50 mV s⁻¹.

Fig. S7 (a) LSV polarization curves for ORR at a rotation speed of 1600 rpm in O_2 -saturated 0.1 M KOH with a scan rate of 5 mV s⁻¹, (b) Tafel slopes, (c) LSV polarization curves for OER with a scan rate of 5 mV s⁻¹, (d) Tafel slopes for Fe@NCNT/RHPC, Co@NCNT/RHPC and CoFe@NCNT/RHPC.

Fig. S8 Potential gaps patterns.

Fig. S9 (a) EIS spectra of CoFe@NC, $(Co_{0.5}Fe_{0.5})S@NC$, CoFe@NCNT/RHPC, CoFe@ $(Co_{0.5}Fe_{0.5})S@NCNT/RHPC$ and Pt/C in O₂-saturated 0.1 M KOH; (b) EIS spectra of CoFe@NC, $(Co_{0.5}Fe_{0.5})S@NC$, CoFe@NCNT/RHPC, CoFe@ $(Co_{0.5}Fe_{0.5})S@NCNT/RHPC$ and RuO₂ in 1 M KOH.

Fig. S10 LSV curves of CoFe@NC, $(Co_{0.5}Fe_{0.5})$ S@NC, CoFe@NCNT/RHPC, CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC and Pt/C using RRDE scanned in O₂-saturated 0.1 M KOH aqueous electrolyte at a rotation speed of 1600 rpm.

Fig. S11 (a, c, e) LSV curves of Pt/C, CoFe@NCNT/RHPC, CoFe@($Co_{0.5}Fe_{0.5}$)S@NCNT/RHPC at different rotating speeds; (b, d, f) shows the corresponding K-L plots at different potentials including the calculated number of electron transfer (n) per O₂.

Fig. S12 Cyclic voltammetry curves at different scanning rates (from 10 to 30 mV s⁻¹) of (a) CoFe@NC, (b) $(Co_{0.5}Fe_{0.5})S@NC$, (c) CoFe@NCNT/RHPC, (d) CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC in N₂-saturated 0.1 M KOH.

Fig. S13 OER polarization curves normalized by ESCA. ECSA is obtained by C_{dl} : ECSA = C_{dl}/C_s , $^1C_s = 0.040 \text{ mF cm}^{-2}$

Fig. S14 ORR polarization curves of (a) CoFe@NC, (b) $(Co_{0.5}Fe_{0.5})S@NC$, (c) CoFe@NCNT/RHPC, (d) $CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC$ before and after 2000 cycles in 0.1M KOH.

Fig. S15 (a) TEM image and (b) XRD pattern of CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC after the ORR testing in 0.1 M KOH aqueous solution.

Fig. S16 (a) TEM image and (b) XRD pattern of CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC after OER testing in 1 M KOH aqueous solution.

Fig. S17 The atomic charge (the numbers) of NCNT.

Fig. S18 Models for (a) C(001), (b) CoFe(110), (c) $(Co_{0.5}Fe_{0.5})S(110)$.

Fig. S19DFT optimized ORR/OER intermediate structures on C sites for NCNT,CoFe/NCNT(CoFe@NCNT/RHPC)and $(Co_{0.5}Fe_{0.5})S/NCNT(CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC).$

Fig. S20(a) Front view and (b) top view of differential electron density and baderchargeofCoFe/NCNT(CoFe@NCNT/RHPC)and $(Co_{0.5}Fe_{0.5})S/NCNT(CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC)structuresduringadsorption of the intermediates (*OH and *OOH).$

H00*

Tab. S1 Specific surface area, pore volume, and pore size of RHPC, CoFe@NC,

Samples	Specific surface area	Micro pores volume	Meso pores volume	Total pores	Average pore size
	(m^2g^{-1})	(mLg^{-1})	(mLg^{-1})	volume	(nm)
				(mLg^{-1})	
RHPC	2266.3	0.88	0.52	1.40	0.80
CoFe@NC	71.0	0.02	0.09	0.11	1.12
(Co _{0.5} Fe _{0.5})S@NC	29.1	0.02	0.04	0.06	1.35
CoFe@NCNT/RHPC	495.4	0.17	0.30	0.47	0.76
CoFe@(Co _{0.5} Fe _{0.5})S@	510.2	0.18	0.32	0.50	0.74
NCNT/RHPC					

(Co_{0.5}Fe_{0.5})S@NC, CoFe@NCNT/RHPC and CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC.

Tab. S2	The	atomic	compositio	on	of H	RHPC,	CoFe@N	CNT/RHP	C and
CoFe@(Co _{0.5} Fe ₀	.5)S@NCNT	C/RHPC obta	ined fro	om XPS	spectra.			
Sample	s		(C 1s	N 1s	S 2p	O 1s	Fe 2p	Co 2p
			(At.%)	(At.%)	(At.%)	(At.%)	(At.%)	(At.%)
RHPC			9	6.39	0.86		2.75		
CoFe@	NCNT/I	RHPC	8	3.90	7.26	0.18	7.60	0.41	0.66

7.57

1.57

7.27

0.69

0.93

 $CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC 81.98$

Tab. S3 Summary of the ORR/OER bifunctional performance of transition metal-based electrocatalysts reported recently.

Catalyst	E _{1/2}	$E_{i=10}$	ΔΕ	Ref.
-	(vs. RHE)	(vs. RHE)	(V)	
CoFe@(Co _{0.5} Fe _{0.5})S@NCNT/RHPC	0.882	1.496	0.614	This work
CoFe@NCNT/RHPC	0.861	1.542	0.681	This work
CoFe@NCS-24	0.88	1.57	0.69	2
Fe,Co,N–C	0.90	1.64	0.74	3
FeCoMoS@NG	0.83	1.468	0.638	4
HHPC	0.78	1.58	0.80	5
e-N/P-C-700	0.867	1.66	0.76	6
NCo ₃ O ₄ @NC-2	0.77	1.50	0.78	7
Co@hNCTs-800	0.87	1.63	0.76	8
Fe/Co-N/S-Cs	0.835	1.515	0.680	9
Ni _{0.5} Fe _{0.5} @NCNTs	0.84	1.5	0.660	10
FeNiNCNT/NCS	0.84	1.59	0.75	11
Fe ₈ Co _{0.2} -NC-800	0.820	1.632	0.812	12
Fe-N _X @NSCST-ZL	0.92	1.71	0.79	13
CoS/Fe3S4@SNCP	0.85	1.50	0.65	14
SA-Fe-SNC@900	0.876	1.632	0.756	15
Fe-SAs@N/S-PCSs	0.90	1.68	0.78	16
Fe–N/S-CNT–GR	0.91	1.60	0.69	17
Fe _x Co _{9-x} S ₈ -NHCS-V	0.80	1.53	0.73	18
CoFe/S-N-C	0.855	1.588	0.733	19
FeCo-NCNTs	0.90	1.55	0.65	20
PB@ Met-700	0.855	1.56	0.705	21

Tab. S4EIS calculation parameters of all samples for ORR in 0.1 M KOH.

	CoFe@NC	(Co _{0.5} Fe _{0.5})S@ NC	CoFe@NCN T/RHPC	CoFe@(Co _{0.5} F e _{0.5})S@NCNT/	Pt/C
				RHPC	
$R_{S}(\Omega cm^{-2})$	8.50	8.88	8.19	10.59	9.57
$R_{\rm H}(\Omega cm^{-2})$	4.68	3.69	3.50	3.46	3.65
$R_L(\Omega cm^{-2})$	35.84	33.68	28.67	13.64	18.37
$C_{\rm H}({\rm F~cm^{-2}})$	0.001	0.021	0.007	0.008	0.004
$C_L(F \text{ cm}^{-2})$	0.009	0.060	0.052	0.075	0.032

Tab. S5 EIS calculation parameters of all samples for OER in 1 M KOH.	
--	--

1 ab. 55									
	CoFe@NC	$(Co_{0.5}Fe_{0.5})S$	CoFe@NCN	CoFe@(Co _{0.5}	RuO ₂				
		@NC	T/RHPC	Fe _{0.5})S@NC					

				NT/RHPC	
$R_{S}(\Omega cm^{-2})$	0.96	0.99	1.11	1.26	1.21
$Rct(\Omega cm^{-2})$	232.80	103.20	7.34	6.15	9.17
$Yo(S sec^n cm^{-2})$	0.004	0.008	0.060	0.040	0.002
n	0.683	0.860	0.769	0.744	0.935

Tab. S6 Charge and discharge voltages and efficiencies of Zinc–air battery with $CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC$ at different turn numbers.

Number of battery cycles	100	200	400	600	800
Discharge voltage (V)	1.12	1.12	1.13	1.08	1.03
Charge voltage (V)	2.10	2.09	2.10	2.09	2.12
Charge and discharge	53.2	53.8	53.8	51.6	48.5
efficiency (%)					

 Tab. S7
 Comparisons of liquid rechargeable Zn-air batteries performances for state-of-the-art catalysts.

Catalyst N	Aaximum power	Catalyst	Cycling	Cycling	Specific	Ref.
d	ensity (mW cm ⁻²)	Loading	Stability	Stability	capacity	
		(mg	@ 5	@ 10	(mAh	
		$cm^{-2})$	mA	mA	g^{-1})	
			cm^{-2}	cm^{-2}	<i>@</i> 10	
			(min)	(min)	mA	
					cm ⁻²	
CoFe@(Co _{0.5} Fe _{0.5})S@NCNT/	RHPC 136	1		10000	813.6	This
						work
Fe/Co-N/S-Cs	102.63	1	1600			9
FeNi@NCNT/NCS	103	1			687.4	11
Fe ₈ Co _{0.2} -NC-800	124.9	1.14	18660		704	12
Fe-N _X @NSCST-ZL					778	13
SA-Fe-SNC@900	218.6	2	9600		798.7	15
Fe-N/S-CNT-GR	123	1		18000	912	17
CoFe/S-N-C	120	1		6000	814	19
PB@ Met-700	148	2		5400	781	21
FeCo-NSC	152.8	2		7200	782.1	22
FeSA-FeNC@NSC	259.88			6000	811.03	23
MIL/ZIF-4-700 °C-NH ₃	176.3	2		30000	893.5	24
NSCA/FeCo	132	1		5000	804.5	25

γ -Fe ₂ O ₃ @CNFs-12	99.06	1			661.6	26
FeNi-NCS-2	109.8	1		1000	639.71	27
Co@N-HPCF-800	136.2	1	3000		723	28
Ni SAs-NC	172	2		18000		29
FeSA-S/N-C	128.35	0.6	30000		800.92	30
CoP@NC-Ru	175	1.5	3000		780	31
NiFeO _x @VACNTs	194	3.5	90000		800	32
Fe/Fe ₃ C@Fe-N _{x-C}	147	1	12000			33
3D SAFe	156	0.48		4800	815	34
FeNCFs-x	173	1		9900	717	35
CoFe@HNSs	131.3	0.5	8400			36
FeNC-900-8	124.9	1			816.4	37
FeCo-N-C	196.3	2		4620	728.6	38
SA-Fe-3DOMC	140	2			786.6	39
Fe-NP/MNCF	111.6	1		10800	794.8	40
POP-Fe/Ni-900	256	1.25	7200		740	41
Fe-SAs/S,N-C/rGO	127.36		37200		817.23	42

Tab. S8 Gibbs free energy change (ΔG) of NCNT, CoFe/NCNT(CoFe@NCNT/RHPC) and (Co_{0.5}Fe_{0.5})S/NCNT(CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC) at different potentials during OER.

ΔG	$\mathbf{U} = 0 \mathbf{V}$			U = 1.23 V			
(eV)	NCNT	CoFe/NCNT	(Co _{0.5} Fe _{0.5})S/ NCNT	NCNT	CoFe/NCNT	(Co _{0.5} Fe _{0.5})S/ NCNT	
Step 1	1.460	0.475	1.331	0.230	-0.755	0.101	
Step 2	-0.215	0.491	0.654	-1.445	-0.739	-0.576	
Step 3	1.290	1.798	1.388	0.060	0.568	0.158	
Step 4	2.385	2.156	1.548	1.155	0.926	0.318	

 Tab. S9
 The bond length parameters of C-O, O-O and O-H of CoFe/NCNT(CoFe@NCNT/RHPC)

Bond	CoFe/NCNT-	(Co _{0.5} Fe _{0.5})S/NCNT-	CoFe/NCNT-	(Co _{0.5} Fe _{0.5})S/NCNT-
length(Å)	ОН	ОН	OOH	ООН
C-0	1.45	1.48	1.47	1.54
0-0	-	-	1.47	1.46
O-H	0.98	0.98	0.99	0.98

and $(Co_{0.5}Fe_{0.5})S/NCNT(CoFe@(Co_{0.5}Fe_{0.5})S@NCNT/RHPC)$ absorbed *OH and *OOH.

Reference

1 A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, M. Nandi, G. Lal, S. Das, Int. J. Energy

Res., 2021, 45, 16908.

2 H. Cheng, Y. Zhuang, C. Meng, B. Chen, J. Chen, A. Yuan, H. Zhou, *Appl. Surf. Sci.*, 2023, **607**, 154953.

3 S. Sarkar, A. Biswas, E. E. Siddharthan, R. Thapa, R. S. Dey, *ACS Nano*, 2022, **16**, 7890.

4 S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, D. J. Yoo, *Appl. Catal., B*, 2020, **279**, 119381.

5 X. Xiao, X. Li, Z. Wang, G. Yan, H. Guo, Q. Hu, L. Li, Y. Liu, J. Wang, *Appl. Catal.*, *B*, 2020, **265**, 118603.

6 K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M. K. H. Leung, Y. Chen, U. Scherf, *J. Am. Chem. Soc.*, 2020, **142**, 2404.

Z. Wang, W. Xu, X. Chen, Y. Peng, Y. Song, C. Lv, H. Liu, J. Sun, D. Yuan, X. Li,
X. Guo, D. Yang, L. Zhang, *Adv. Funct. Mater.*, 2019, **29**, 1902875.

8 Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang, X. Gong, X. Sui, A. Yu, L. Zhao, Z. Wang, Z. Chen, *Nano Energy*, 2020, **71**, 104592.

9 C. Li, H. Liu, Z. Yu, Appl. Catal., B, 2019, 241, 95.

10 C. Sun, Y.-J. Zhao, X.-Y. Yuan, J.-B. Li, H.-B. Jin, Rare Metals, 2022, 41, 2616.

11 J.-T. Ren, L. Chen, Y.-S. Wang, W.-W. Tian, L.-J. Gao, Z.-Y. Yuan, *ACS Sustain*. *Chem. Eng.*, 2020, **8**, 223.

12 T. Jin, J. Nie, M. Dong, B. Chen, J. Nie, G. Ma, Nano-micro Lett., 2022, 15, 26.

13 C. Li, Y. Zhang, M. Yuan, Y. Liu, H. Lan, Z. Li, K. Liu, L. Wang, *Chem. Eng. J.*, 2023, **471**, 144515.

14 L. Yan, B. B. Xie, C. Yang, Y. H. Wang, J. Q. Ning, Y. J. Zhong, Y. Hu, *Adv. Energy Mater.*, 2023, **13**, 2204245.

15 Z. H. Chen, X. W. Peng, Z. X. Chen, T. Z. Li, R. Zou, G. Shi, Y. F. Huang, P. Cui, J. Yu, Y. L. Chen, X. Chi, K. P. Loh, Z. Q. Liu, X. H. Li, L. X. Zhong, J. Lu, *Adv. Mater.*, 2023, **35**, 2209948.

16 W. Wei, F. Lu, L. Cui, Y. Zhang, Y. Wei, L. Zong, Carbon, 2022, 197, 112.

17 W. Y. Noh, J. Mun, Y. Lee, E. M. Kim, Y. K. Kim, K. Y. Kim, H. Y. Jeong, J. H. Lee, H.-K. Song, G. Lee, J. S. Lee, *ACS Catal.*, 2022, **12**, 7994.

18 S.-J. Li, Y. Xie, B.-L. Lai, Y. Liang, K. Xiao, T. Ouyang, N. Li, Z.-Q. Liu, *Chin. J. Catal.*, 2022, **43**, 1502.

19 G. Li, Y. Tang, T. Fu, Y. Xiang, Z. Xiong, Y. Si, C. Guo, Z. Jiang, *Chem. Eng. J.*, 2022, **429**, 132174.

20 S. Y. Lin, L. X. Xia, L. Zhang, J. J. Feng, Y. Zhao, A. J. Wang, Chem. Eng. J., 2021, 424.

21 Y. B. Lian, K. F. Shi, H. J. Yang, H. Sun, P. W. Qi, J. Ye, W. B. Wu, Z. Deng, Y. Peng, *Small*, 2020, **16**, 1907368.

22 Y. Wu, C. Ye, L. Yu, Y. Liu, J. Huang, J. Bi, L. Xue, J. Sun, J. Yang, W. Zhang, X. Wang, P. Xiong, J. Zhu, *Energy Storage Mater.*, 2022, **45**, 805.

23 W. J. Zhai, S. H. Huang, C. B. Lu, X. N. Tang, L. B. Li, B. Y. Huang, T. Hu, K. Yuan, X. D. Zhuang, Y. W. Chen, *Small*, 2022, **18**, 2107225.

24. R. Song, L. Guan, L. Fan, X. Miao, H. Zhang, J. Cheng, T. Zhou, C. Ni and J. Fan, *J. Energy Storage*, 2024, **80**, 110345.

25. Y. Zhang, X. Zhang, Y. Li, J. Wang, S. Kawi and Q. Zhong, *Nano Res.*, 2023, 16, 6870-6880.

26. Z. Yao, Y. Li, D. Chen, Y. Zhang, X. Bao, J. Wang and Q. Zhong, *Chem. Eng. J.*, 2021, **415**, 129033.

27. Z. Yao, D. Chen, Y. Li, Q. Lyu, J. Wang and Q. Zhong, *Int. J. Hydrogen Energy*, 2022, **47**, 984-992.

28. Y. Zhang, Q. He, Z. Chen, Y. Chi, J. Sun, D. Yuan and L. Zhang, *J. Energy Chem.*, 2023, **76**, 117-126.

29. H. Jiang, J. Xia, L. Jiao, X. Meng, P. Wang, C.-S. Lee and W. Zhang, *Appl. Catal.*, *B*, 2022, **310**, 121352.

30. S. Zhou, C. Chen, J. Xia, L. Li, X. Qian, F. Yin, G. He, Q. Chen and H. Chen, *Small*, 2024, DOI: 10.1002/smll.202310224, e2310224-e2310224.

31. M. M. Kumar, C. Aparna, A. K. Nayak, U. V. Waghmare, D. Pradhan and C. R. Raj, *ACS Appl. Mater. Interfaces*, 2024, **16**, 3542-3551.

32. Y. Yan, Y. Xu, B. Zhao, Y. Xu, Y. Gao, G. Chen, W. Wang and B. Y. Xia, J. Mater. Chem. A, 2020, **8**, 5070-5077.

L. B. Zong, X. Chen, S. L. Liu, K. C. Fan, S. M. Dou, J. Xu, X. X. Zhao, W. J. Zhang, Y. W. Zhang, W. C. Wu, F. H. Lu, L. X. Cui, X. F. Jia, Q. Zhang, Y. Yang, J. Zhao, X. Li, Y. D. Deng, Y. N. Chen and L. Wang, *J. Energy Chem.*, 2021, 56, 72-79.
 T. Jin, J. Nie, M. Dong, B. Chen, J. Nie and G. Ma, *Nano-Micro Lett.*, 2022, 15, 26.

35. Y. Ma, D. Chen, D. D. Zhang, H. Yu, Y. P. Zheng, W. J. Li, L. Wang, Q. Liu and W. Y. Yang, *Carbon*, 2022, **187**, 196-206.

36. X. T. Zhang, Z. Y. Zhu, Y. B. Tan, K. Qin, F. X. Ma and J. H. Zhang, *Chem. Commun.*, 2021, **57**, 2049-2052.

37. R. Hao, S. Gu, J. Chen, Z. Wang, Q. Gan, Z. Wang, Y. Huang, P. Liu, K. Zhang, K. Liu, C. Liu and Z. Lu, *Mater. Today Energy*, 2021, **21**, 100826.

38. D. Wang, H. Xu, P. Yang, X. Lu, J. Ma, R. Li, L. Xiao, J. Zhang and M. An, J. Mater. Chem. A, 2021, 9, 13678-13687.

39. P. Li, X. Qi, L. Zhao, J. Wang, M. Wang, M. Shao, J. S. Chen, R. Wu and Z. Wei, *J. Mater. Chem. A*, 2022, **10**, 5925-5929.

40. T. W. Wang, Q. Zhang, K. Lian, G. C. Qi, Q. Liu, L. G. Feng, G. Z. Hu, J. Luo and X. J. Liu, *J. Colloid Interface Sci.*, 2024, **655**, 176-186.

41. P. X. Weng, Y. Q. Guo, K. Wu, X. Wang, G. Q. Huang, H. Lei, Y. F. Yuan, W. G. Lu and D. Li, *J. Mater. Chem. A*, 2023, **11**, 12194-12201.

42. L. Li, N. Li, J. W. Xia, S. L. Zhou, X. Y. Qian, F. X. Yin, G. H. Dai, G. Y. He and H. Q. Chen, *Nano Res.*, 2023, **16**, 9416-9425.