Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Photoelectric performance enhancement of Sn-based perovskites by

benzylamine boron trifluoride passivation

Wenhao Zheng¹, Xiao Peng¹, Wenjing Zhai¹, Lin Huang¹, Peizhuo Chen¹, Penghui Shi², Xiaohui Zhou¹, Jianguo Wan¹, Zhibo Yan^{1, a)}, and J.-M. Liu^{1,3}

¹National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China. ²Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China ³Institude for Advanced Materials, Hubei Normal University, Huangshi 435002, Hubei, China. a) <u>zbyan@nju.edu.cn</u>

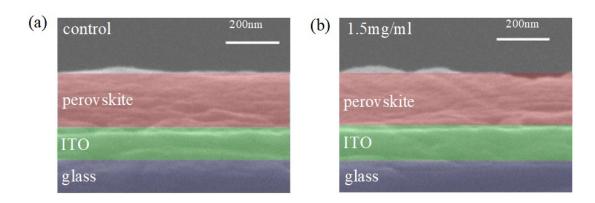


Fig.S1 Cross-sectional SEM images of perovskite (a) without BBF and (b) with BBF.

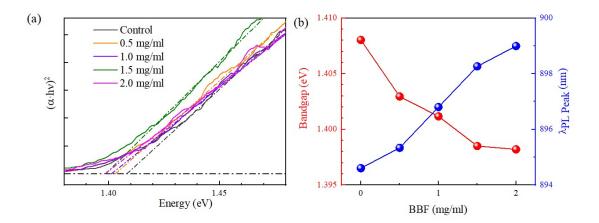


Fig.S2 (a) Tauc plot of the absorbance spectra of the FASnI₃ films with different BBF concentrations. (b) Optical bandgap and PL position with respective to the BBF concentration.

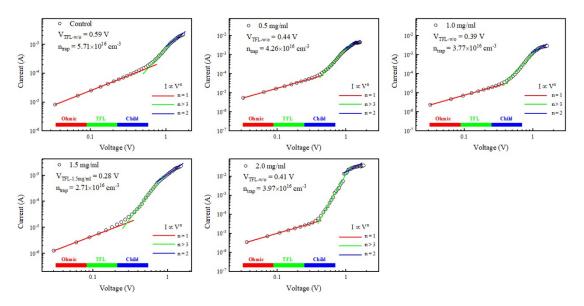


Fig.S3 Space-charge-limited current versus voltage for the perovskite films with different amount of BBF.

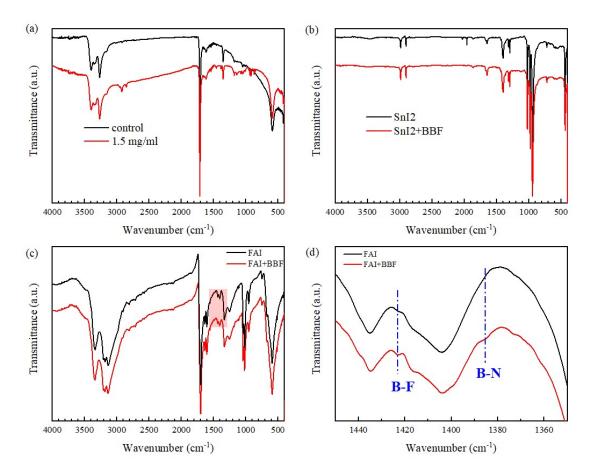


Fig.S4 FTIR spectra of (a) $FASnI_3$ films (b) SnI_2 precursor films (c) FAI precursor films without/with BBF additive, respectively. (d) Enlarged view of the FTIR peaks correspond to B-F and B-N in FAI FTIR spectra.