Electronic Supplementary Information

Copper selenide/amino hyperbranched polymer as an organic/inorganic hybrid composite cathode for rechargeable magnesium batteries

Lin Ran^a, Hao Li^a, Fei Xu^c, Daohong Zhang^{a,b*}, Ting Li^{a,b*}

^a Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China.

^b Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center,

Jieyang 515200, China

^c Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

* E-mail:

Ting Li (liting@mail.scuec.edu.cn)

Daohong Zhang (daohong.zhang@scuec.edu.cn)

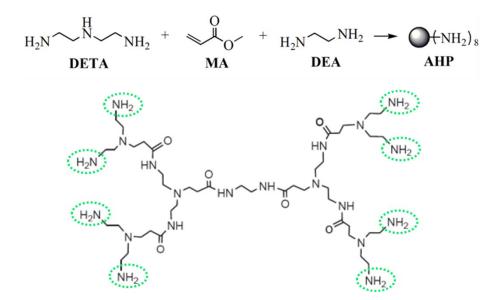


Fig. S1. Synthesis scheme and structure of AHP.

The synthesis process of amino hyperbranched polymer (AHP) is: a certain molar ratio of diethylenetriamine and methyl acrylate were added to methanol, and the mixture was stirred and reacted at 5 °C for 12 h. After dropwise addition of ethylenediamine, the mixture was reacted at 80 °C for 1 h and then at 130 °C for 8 h under nitrogen atmosphere to obtain liquid AHP.

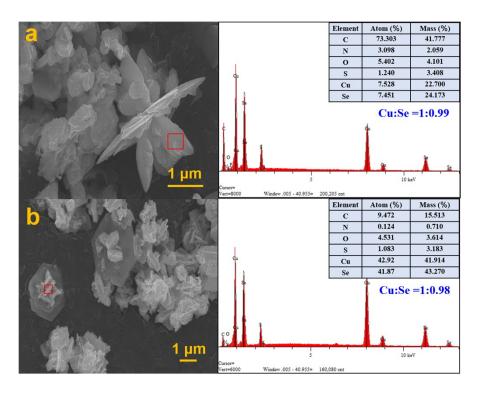


Fig. S2. EDS spectra of (a) CuSe-AHP and (b) CuSe samples.

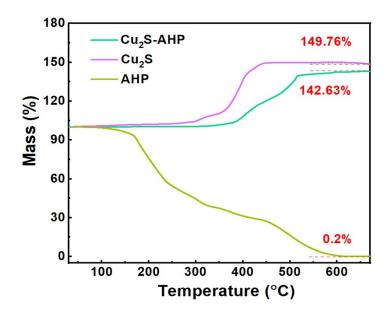


Fig. S3. TGA curves of AHP, Cu₂S and Cu₂S-AHP.

Pure Cu₂S gets weight increase of 49.76% at 650 °C, which is consistent with the theoretical mass increase (oxidation to CuO and CuSO₄), while AHP loses weight (99.8%) due to the decomposition. As a result, the mass change of Cu₂S-AHP at 650 °C (42.63% increase) originates from the mass loss of AHP and mass increase of Cu₂S, and thus the content of AHP in Cu₂S-AHP is calculated to be 4.8 wt%.

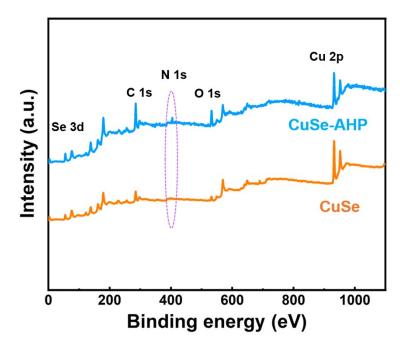
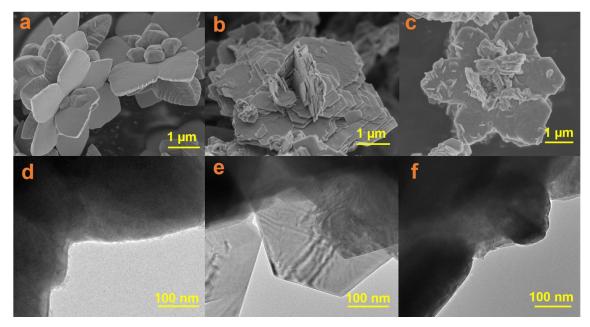



Fig. S4. Overall XPS spectra of CuSe-AHP and CuSe.

Fig. S5. SEM images of (a) Cu₂S-AHP, (b) CuSe-AHP and (c) CuSe. TEM images of (d) Cu₂S-AHP, (e) CuSe-AHP and (f) CuSe.

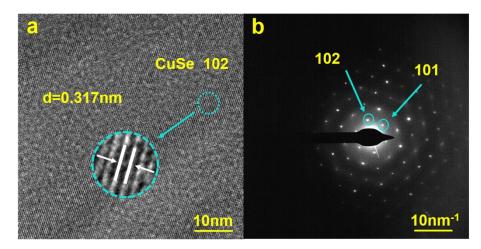
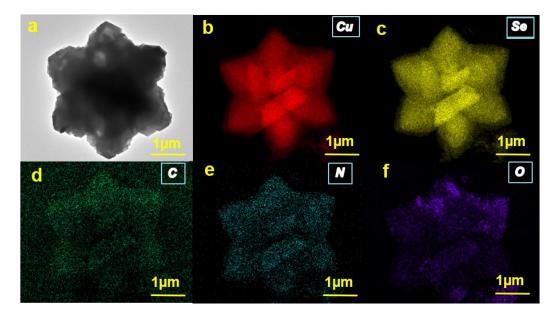
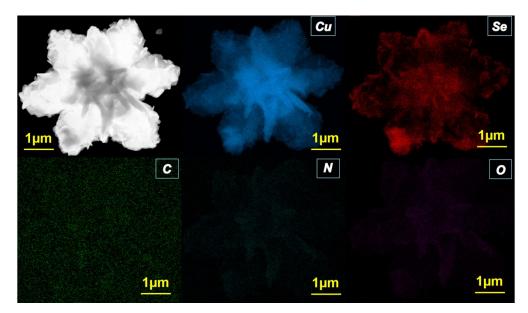




Fig. S6. (a) HRTEM image and (b) corresponding SAED pattern of CuSe.

Fig. S7. (a) TEM image and (b-f) corresponding elemental (Cu, Se, C, N, O) mapping images of Cu₂S-AHP.

Fig. S8. HAADF STEM image and corresponding elemental (Cu, Se, C, N and O) mapping images of CuSe.

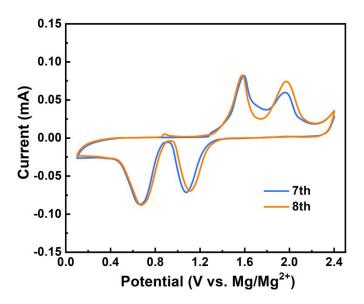


Fig. S9. CV curves of CuSe-AHP electrode at the 7th and 8th cycles (0.1 mV s⁻¹)

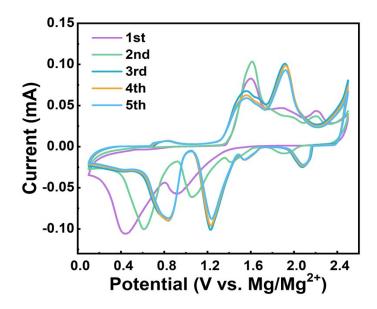


Fig. S10. CV curves of CuSe electrode at 0.1 mV s⁻¹.

Fig. S11. Charge/discharge profiles of CuSe electrode at 100 mA g^{-1} .

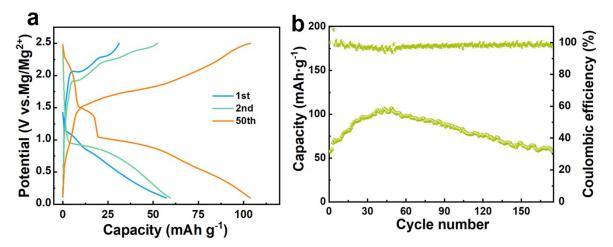


Fig. S12. (a) Charge/discharge profiles and (b) cycling performance of Cu_2S -AHP electrode at 100 mA g⁻¹.

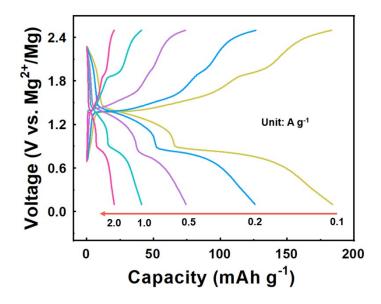


Fig. S13. Charge/discharge profiles of CuSe electrode at different current densities.

Materials	Electrolyte	Voltage range(V)	Current density (mA g ⁻¹)	Capacity (mAh g ⁻¹)	Ref
CuSe-AHP	Mg(TFSI)2-MgCl2/DME	0.1~2.5	100 1000	227.6 87.5	This work
CuSe nanoparticles	0.25 M Mg(AlCl ₂ EtBu) ₂ /THF	0.2~2.0	100	65	1
CoSe ₂	0.5 M Mg-HMDS/G4	0.1~2.5	100	150	2
Sb ₂ Se ₃	0.5 M Mg-HMDS/G4	0.1~2.2	1000	60	3
MoSe ₂ /C	0.4 M (PhMgCl) ₂ -0.2 M AlCl ₃ -0.5 M LiCl/THF	0.1~1.8	200	89	4
C–Cu _{2-x} Se	0.2 M Mg-HMDS/DME	0.3~2.2	100	138	5
			1000	48	5
NiCo ₂ Se ₄	0.3 M Mg-HMDSAlCl ₃ /G4	0.01~2.8	2000	40	6
Ag ₂ Se@C	0.2 M APC/THF	0.3~1.9	100	182	7
Ni _{0.85} Se	0.4 M APC/THF+0.4 M LiCl	0.01~2.5	500	92	8
H-CoSe ₂	0.2 M Mg-HMDS/G4/MgCl ₂	0.01~2.6	50	110	9
	APC	0.01~2.4	500	74	9
MoS_2			100	60	10
			200	50	10
MoS	0.2 M Mg-HMDS/DME	0.3~2.6	100	175	11
MoS ₃			1000	75	11
Cu_9S_5	0.2 M Mg-HMDS/DME	0.1~2.2	100	180	12
Cu ₉ S5			1000	88	12
V_2O_5	0.25 M Mg(AlCl2EtBu)2/THF	0.4~2.0	200	60	13

 Table S1 Comparison of the present results with previous reports.

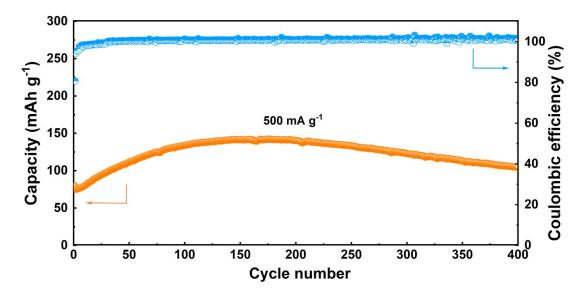
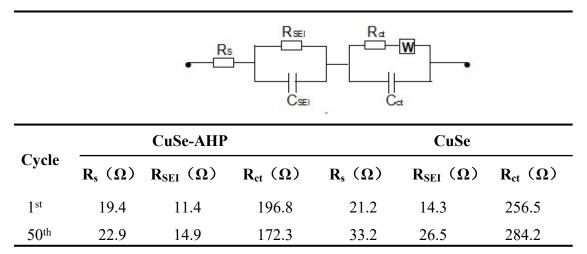



Fig.S14. Cycling performance of CuSe-AHP electrode at 500 mA g^{-1} .

Table S2 EIS simulation results of CuSe-AHP and CuSe electrodes after the first and

 50th cycles in RMBs using the equivalent circuit as below.

 $R_{\rm s}$, $R_{\rm SEI}$ and $R_{\rm ct}$ are the resistances of solution, solid electrolyte interface (SEI) film and charge transfer, respectively. W represents Warburg impedance

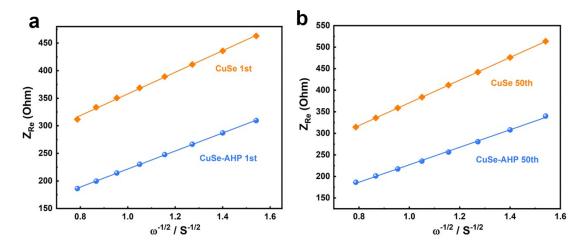


Fig. S15. Linear fitting of Z_{Re} with negative square root of angular frequency ($\omega^{-1/2}$) in the low frequency diffusion region for CuSe-AHP and CuSe electrodes after (a) the 1st cycle and (b) 50th cycle.

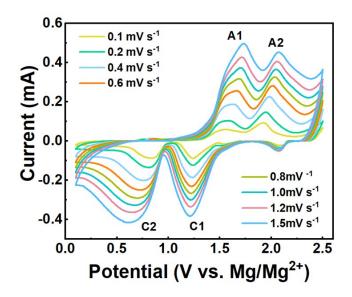


Fig. S16. CV profiles of CuSe electrode at different scan rates.

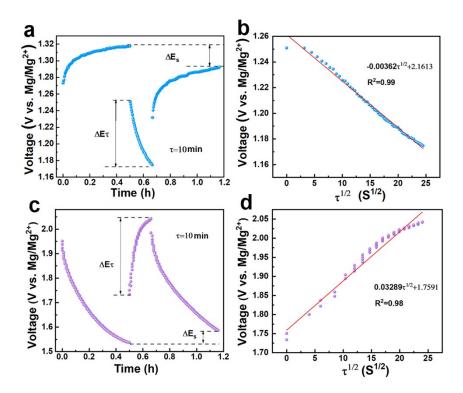
Peak		CuSe-AHP		CuSe		
	$i_{\rm p}/v^{1/2}$	$D (\times 10^{-11} \text{ cm}^2 \text{ s}^{-1})$	$i_{\rm p}/v^{1/2}$	$D (\times 10^{-11} \text{ cm}^2 \text{ s}^{-1})$		
C1	0.0403	2.6862	0.0304	2.0246		
C2	0.0490	3.2232	0.0306	2.0835		
A1	0.0526	3.5024	0.0343	2.3528		
A2	0.0477	3.1708	0.0352	2.4047		

Table S3. The results of Mg^{2+} diffusion coefficient of CuSe-AHP and CuSe electrodes calculated from CV.

The Mg²⁺ diffusion coefficient is calculated by the following equation:¹⁴

$$i_{\rm p} = 2.69 \times 10^5 \, n^{3/2} \, A D^{1/2} v^{1/2} C_0 \tag{S1}$$

where i_p is the peak current (A), *n* is the number of electrons per molecule during the reaction, *A* is the contact area between the electrode and electrolyte, *D* is the diffusion coefficient of Mg²⁺ (cm² s⁻¹), *C*₀ is the concentration of Mg²⁺ in the electrode material (mol m⁻³), and *v* is the scan rate (V s⁻¹).


Table S4. The results of Mg^{2+} diffusion coefficient of CuSe-AHP and CuSe electrodes calculated from GITT.

	$D_{\rm Mg}^{2+}$ (10 ⁻¹¹ cm ² s ⁻¹)		
_	CuSe-AHP	CuSe	
Peak C ₁	2.4997 (1.21V)	1.5883 (1.20V)	
Peak C ₂	3.2107 (0.80V)	2.6254 (0.81V))	
Peak A ₁	3.8875 (1.49V)	2.4225 (1.50V)	
Peak A ₂	2.8709 (1.82V)	1.9529 (1.82V)	

The Mg-ion diffusion coefficients (D_{Mg}^{2+}) of CuSe-AHP and CuSe electrodes can be calculated based on the following equation.¹⁵

$$D_{\rm Mg^{2+}} = \frac{4}{\pi\tau} \left(\frac{m_B V_m}{M_B A}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \tag{S2}$$

where $V_{\rm m}$, $M_{\rm B}$ and $m_{\rm B}$ are the molar volume, the molar mass and the weight of the compound, respectively, A is the active surface area of the electrode, τ is the charging or discharging time within one procedure, ΔE_{τ} and $\Delta E_{\rm s}$ represent the total voltage change during the current pulse and the steady-state voltage change at the plateau potential, respectively.

Fig. S17. A single GITT titration and the corresponding linear behavior of E vs. $\tau^{1/2}$ relationship of CuSe-AHP electrode at (a, b) discharged from 0.91V to 0.82V and (c, d) charged from 1.96V to 2.25V.

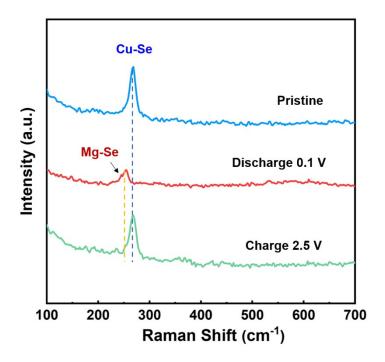


Fig. S18. Raman spectra of CuSe-AHP electrode at different charge/discharge states.

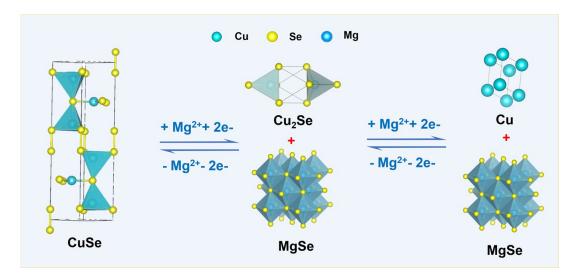
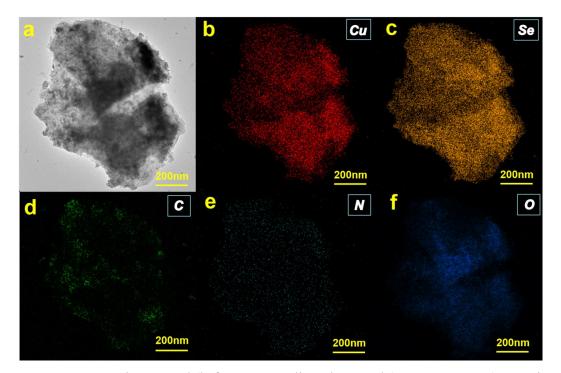



Fig. S19. Schematic illustration for magnesium-storage mechanism of CuSe-AHP electrode.

Fig. S20. (a) TEM image and (b-f) corresponding elemental (Cu, Se, C, N, O) mapping images of CuSe electrode after 50 cycles.

References

- S. Yang, F. Ji, Z. Wang, Y. Zhu, K. Hu, Y. Ouyang, R. Wang, X. Ma, C. Cao, *Electrochim Acta* 2019, *324*, 134864.
- 2 D. Chen, F. Du, S.-a. Cao, T. Li, F. Xu, Chem. Eng. J. 2022, 428, 129545.
- 3 D. Chen, Y. Zhang, J. Shen, X. Li, Z. Chen, S. Cao, T. Li, F. Xu, *Dalton Trans.* 2019, 48, 17516-17523.
- J.-J. Fan, S.-Y. Shen, Y. Chen, L.-N. Wu, J. Peng, X.-X. Peng, C.-G. Shi, L. Huang,
 W.-F. Lin, S.-G. Sun, *Electrochem. Commun.* 2018, 90, 16-20.
- 5 D. Chen, Y. Zhang, X. Li, J. Shen, Z. Chen, S.-A. Cao, T. Li, F. Xu, *Chem. Eng. J.* 2020, 384, 123235.
- 6 Y. Zhang, T. Li, S.-A. Cao, W. Luo, F. Xu, ACS Sustainable Chem. Eng. 2020, 8, 2964-2972.
- J. H. Ha, B. Lee, J. H. Kim, B. W. Cho, S.-O. Kim, S. H. Oh, *Energy Stor. Mater.* 2020, 27, 459-465.

- 8 D. Chen, J. Shen, X. Li, S.-A. Cao, T. Li, W. Luo, F. Xu, J. Energy Chem. 2020, 48, 226-232.
- 9 D. Chen, Y. Zhang, X. Li, J. Shen, Z. Chen, S.-A. Cao, T. Li, F. Xu, Nanoscale. 2019, 11, 23173-23181.
- 10 F. Zhu, H. Zhang, Z. Lu, D. Kang, L. Han, J. Energy Stor. 2021, 42, 103046.
- 11 Y. Zhang, D. Chen, X. Li, J. Shen, Z. Chen, S. A. Cao, T. Li, F, Xu, *Nanoscale*.2019, *11*, 16043.
- 12 M. Wu, Y. Zhang, H. Wu, A. Qin, X. Li, J. Shen, Z. Chen, S. A. Cao, T. Li, F. Xu, *Energy Technol.* 2019, 7, 1800777.
- 13 Y. Xiao, M. Pan, J. Zou, R. Guo, X. Zeng, W, Ding, Ionics 2019, 25, 5889-5997.
- 14 Z. Wei, D. Wang, M. Li, Y. Gao, C. Wang, G. Chen, F. Du, Adv. Energy Mater. 2018, 8, 1801102.
- 15 C. Pei, F. Xiong, J. Sheng, Y. Yin, S. Tan, D. Wang, C. Han, Q. An, L. Mai, ACS Appl. Mater. Interfaces 2017, 9, 17060-17066.