SUPPORTING INFORMATION

An innovative nucleation method for high and rapid hydrogen storage

based on clathrate hydrates

Siyuan Chen^a, Yanhong Wang ^{a, c *}, Shuanshi Fan^a, Xuemei Lang^{a,b}, Gang Li^a

(^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China; ^bKey Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510640, China; ^cKey Lab of Enhanced Heat Transfer and Energy Conservation, Ministry Education, Guangzhou, 510640, China)

*Corresponding author

E-mail address: <u>wyh@scut.edu.cn</u>

Fig. S1 given below shows the pressure and temperature evolution along with the hydrogen uptake and instantaneous hydrogen uptake rate using the q-SF method under the experimental conditions of 274.15 K and 8.3 MPa.

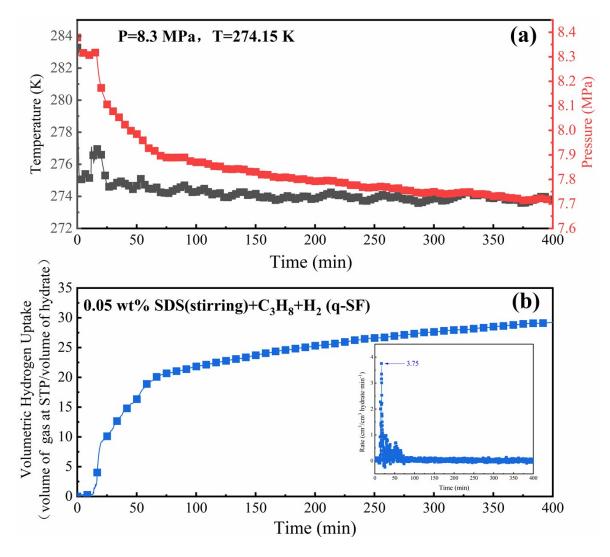


Fig. S1- Promoting effect of quasi-simultaneous formation on propane-hydrogen hydrates under mild conditions (a) temperature and pressure changes, (b) gas storage capacity and gas storage rate $(C_{SDS} = 0.05 \text{wt}\%, P = 8.3 \text{ MPa}, T = 274.15 \text{ K}).$

Fig.S2 given below shows the variation of temperature and pressure over time with different SDS concentrations under the same initial experimental conditions of 18.2 MPa and 274.15 K.

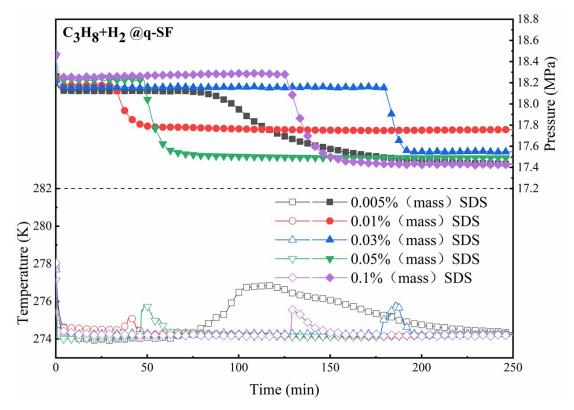


Fig. S2- The curve of pressure and temperature of propane-hydrogen hydrates quasi-simultaneous formation with different SDS concentrations (274.15 K and initial pressure of 18.2 MPa)