Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

#### **Supplementary Information**

### In situ interphase engineering for all-solid-state Li batteries: A case study on

#### LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>/Li<sub>0.33</sub>La<sub>0.55</sub>TiO<sub>3</sub> composite cathode guided with *ab initio* calculations

Che-an Lin<sup>1</sup>, Martin Ihrig<sup>2</sup>, Kuan-chen Kung<sup>1</sup>, Hsiang-ching Chen<sup>1</sup>, Martin Finsterbusch<sup>3</sup>, Olivier Guillon<sup>3</sup>,

and Shih-kang Lin<sup>1, 4, 5, 6\*</sup>

<sup>1</sup>Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan <sup>2</sup>Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

<sup>3</sup> Institute of Energy and Climate Research – Materials Synthesis and Processing (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

<sup>4</sup>Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan

<sup>5</sup> Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan

<sup>6</sup> Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan

\*Corresponding author: Email: <u>linsk@mail.ncku.edu.tw</u> (S.-k. Lin)

This PDF contains 14 figures, 4 tables, 1 reference, and supplementary texts.

#### LNMO/LLTO interfacial stability calculation before and after charging



Figure S1. Interfacial convex hulls of (a) LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (fully discharged LNMO)/LLTO interface and (b)

Ni<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (fully charged LNMO)/LLTO interface.

#### LNMO doping stabiltiy computation

To calculate the interfacial reactions between doped LNMO and LLTO, the preferred doping site of each dopant should be obtained. The decomposition energies of main group metals (Na, K, Mg, Ca, Al, Ga, Ge, Sn, Sb), 3d transition metals (Ti, V, Cr, Fe, Co, Cu, Zn), 4d transition metals (Zr, Nb, Mo), and 5d transition metals (W, Ta) doping into the Li, Ni, and Mn sites of disordered LNMO were calculated. As shown in Equation (1), the decomposition energy is the reaction energy of doped LNMO reacting into its competing phases. Unstable dopants with more negative decomposition energies compared to Na substituting Li site were excluded from further computations.<sup>1</sup> By comparing the decomposition energies of dopants in each site, the most preferred doping site of each stable doping system was selected for interfacial reaction calculation, as shown in Table S1.

| Stable dopants | Preferred doping site |
|----------------|-----------------------|
| Na             | Mn site               |
| Mg             | Mn site               |
| Al             | Mn site               |
| Ca             | Mn site               |
| Ga             | Mn site               |
| Ge             | Ni site               |
| Sn             | Ni site               |
| Sb             | Ni site               |
| Ti             | Ni site               |
| V              | Mn site               |
| Cr             | Mn site               |
| Fe             | Mn site               |
| Co             | Mn site               |
| Cu             | Mn site               |
| Zn             | Mn site               |
| Nb             | Ni site               |
| Ru             | Ni site               |
| Та             | Ni site               |
| W              | Ni site               |

Table S1. Stable dopants and their preferred doping site in LNMO

#### Mg-, Al-, Sb-, and Cr-doped LNMO/LLTO interfacial convex hulls

Li<sub>32</sub>Ni<sub>16</sub>Mn<sub>47</sub>MgO<sub>128</sub>, Li<sub>32</sub>Ni<sub>16</sub>Mn<sub>47</sub>AlO<sub>128</sub>, Li<sub>32</sub>Ni<sub>15</sub>Mn<sub>48</sub>SbO<sub>128</sub>, or Li<sub>32</sub>Ni<sub>16</sub>Mn<sub>47</sub>CrO<sub>128</sub> are labeld as



Mg-doped LNMO, Al-doped LNMO, Sb-doped LNMO, and Cr-doped LNMO, respectively.

Figure S2. (a) Mg-, (b) Al-, (c) Sb-, and (d) Cr-doped LNMO/LLTO interfacial convex hulls.

# Dopant-induced interphases in doped LNMO/LLTO

| Dopant | Dopant-induced interphases                                        |
|--------|-------------------------------------------------------------------|
| Na     | NaO <sub>2</sub> , NaMn <sub>3</sub> O <sub>7</sub>               |
| Mg     | $Li_2MgMn_3O_8$                                                   |
| Al     | LiAl <sub>5</sub> O <sub>8</sub>                                  |
| Ca     | $Ca_2Ti_3O_8$                                                     |
| Ga     | $Ga_2NiO_4$                                                       |
| Ge     | Ni <sub>2</sub> GeO <sub>4</sub>                                  |
| Sn     | $\mathrm{SnO}_2$                                                  |
| Sb     | LiNiSbO <sub>4</sub>                                              |
| Ti     | TiNiO <sub>3</sub>                                                |
| V      | $LaVO_4$                                                          |
| Cr     | $Li_{32}Ti_5Cr_{11}O_{48}$                                        |
| Fe     | $La_2FeO_6$                                                       |
| Со     | CoO                                                               |
| Cu     | LaCu <sub>2</sub> O <sub>4</sub> , Cu <sub>2</sub> O <sub>3</sub> |
| Zn     | $Mn_4Zn_3Ni_2O_{12}$ , $ZnNi_2O_4$                                |
| Nb     | LaNbO <sub>4</sub>                                                |
| Ru     | $La_4RuO_6$                                                       |
| Та     | LaTaO <sub>4</sub>                                                |
| W      | $La_2WO_6$                                                        |

Table S2. Dopant-induced interphases in doped LNMO/LLTO

#### Stability of Li<sub>2</sub>MgMn<sub>3</sub>O<sub>8</sub>, LiAl<sub>5</sub>O<sub>8</sub>, LiNiSbO<sub>4</sub>, and Li<sub>32</sub>Ti<sub>5</sub>Cr<sub>11</sub>O<sub>48</sub> against fully delithiated LNMO

Ni<sub>16</sub>Mn<sub>47</sub>MgO<sub>128</sub>, Ni<sub>16</sub>Mn<sub>47</sub>AlO<sub>128</sub>, Ni<sub>15</sub>Mn<sub>48</sub>SbO<sub>128</sub>, and Ni<sub>16</sub>Mn<sub>47</sub>CrO<sub>128</sub> are labeled as Mg-doped



NMO, Al-doped NMO, Sb-doped NMO, and Cr-doped NMO, respectively.

Figure S3. Interfacial sonvex hulls of (a) Li<sub>2</sub>MgMn<sub>3</sub>O<sub>8</sub>, (b) LiAl<sub>5</sub>O<sub>8</sub>, (c) LiNiSbO<sub>4</sub>, and (d) Li<sub>32</sub>Ti<sub>5</sub>Cr<sub>11</sub>O<sub>48</sub>

against fully delithiated LNMO.

Li<sub>2</sub>MgMn<sub>3</sub>O<sub>8</sub> and LiAl<sub>5</sub>O<sub>8</sub> density of states



Figure S4. (a)  $Li_2MgMn_3O_8$  and (b)  $LiAl_5O_8$  density of states.

### LiAl<sub>5</sub>O<sub>8</sub> atomic structure

The red, blue, and green atoms are O, Al, and Li, repectively.



Figure S5. LiAl<sub>5</sub>O<sub>8</sub> atomic model.

# LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>, LiNi<sub>0.5</sub>Mn<sub>1.45</sub>Al<sub>0.05</sub>O<sub>4</sub>, LiNi<sub>0.5</sub>Mn<sub>1.425</sub>Al<sub>0.075</sub>O<sub>4</sub>, and LiNi<sub>0.5</sub>Mn<sub>1.4</sub>Al<sub>0.1</sub>O<sub>4</sub> XRD analysis



Figure S6. XRD patterns of (a) LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>, (b) LiNi<sub>0.5</sub>Mn<sub>1.45</sub>Al<sub>0.05</sub>O<sub>4</sub>, (c) LiNi<sub>0.5</sub>Mn<sub>1.425</sub>Al<sub>0.075</sub>O<sub>4</sub>, and (d)

 $LiNi_{0.5}Mn_{1.4}Al_{0.1}O_4.$ 



Figure S7. Dilatometry analysis for LNMO/LLTO and Al-LNMO/LLTO mixtures.

#### DTA and TGA for LNMO and Al-LNMO powders



Figure S8. DTA and TGA for (a) LNMO and (b) Al-LNMO powders.



XRD analysis for as-sintered and annealed LNMO/LLTO and Al-LNMO/LLTO composite cathodes

Figure S9. XRD patterns of as-sintered and annealed (a) LNMO/LLTO and (b) Al-LNMO/LLTO composite

cathodes.

EDS line profiles of FAST/SPS-sintered, heat-treated, and charged LNMO/LLTO interface



Figure S10. EDS line profiles of (a) FAST/SPS-sintered, (b) 1000 °C 2 h heat-treated, and (c) charged

LNMO/LLTO interface.

# SAED patterns of FAST/SPS-sintered, heat-treated, and charged LNMO/LLTO



Figure S11. SAED patterns of FAST/SPS-sintered LNMO/LLTO at (a) LLTO, (b) interface, and (c) LNMO,

1000 °C 2 h heat-treated LNMO/LLTO at (d) LLTO, (e) interface, and (f) LNMO, and charged

LNMO/LLTO at (g) LLTO, (h) interface, and (i) LNMO.

EDS line profiles of FAST/SPS-sintered, heat treated, and charged Al-LNMO/LLTO interface



Figure S12. EDS line profiles of (a) FAST/SPS-sintered, (b) 1000 °C 1 h heat-treated, and (c) charged Al-LNMO/LLTO interface.

# SAED patterns of FAST/SPS-sintered, heat-treated, and charged Al-LNMO/LLTO



Figure S13. SAED patterns of FAST/SPS-sintered Al-LNMO/LLTO at (a) LLTO, (b) interface, and (c) Al-

LNMO, 1000 °C 1 h heat-treated Al-LNMO/LLTO at (d) LLTO, (e) interface, and (f) Al-LNMO, and

charged Al-LNMO/LLTO at (g) LLTO, (h) interface, and (i) Al-LNMO.



Figure S14. First-charge curves of (a) LNMO/LLTO and (b) Al-LNMO/LLTO composite cathodes.

# Fitted impedance values from FAST/SPS-sintered and heat-treated LNMO/LLTO composite cathode

Table S3. Fitted impedance values from FAST/SPS-sintered and heat-treated LNMO/LLTO composite cathode.

|                                 | FAST/SPS-sintered | 1 h heat-treated | 2 h heat-treated | 4 h heat-treated |
|---------------------------------|-------------------|------------------|------------------|------------------|
| R1 (Ω)                          | 48                | 41               | 50               | 48               |
| <b>Q2</b> $(F \cdot s^{a-1})$   | 3.125E-8          | 1.5E-9           | 1.8E-8           | 3.77E-9          |
| a2                              | 0.7725            | 0.8626           | 0.7413           | 0.8049           |
| R2 (Ω)                          | 131               | 434              | 249              | 273              |
| <b>Q3</b> ( $F \cdot s^{a-1}$ ) | 7.9E-7            | 5.06E-7          | 1.84E-6          | 3.83E-7          |
| a3                              | 0.7713            | 0.6013           | 0.5849           | 0.7035           |
| R3 (Ω)                          | 1709              | 1163             | 462              | 400              |
| <b>Q4</b> ( $F \cdot s^{a-1}$ ) | 3.85E-5           | 7.53E-6          | 1.96E-5          | 2.3E-5           |
| a4                              | 0.393             | 0.6788           | 0.7143           | 0.7521           |
| R4 (Ω)                          | 3545              | 2763             | 929              | 935              |
| <b>Q5</b> ( $F \cdot s^{a-1}$ ) | 8.38E-7           | 3.6E-6           | 6.95E-6          | 1.15E-5          |
| a5                              | 0.6152            | 0.7449           | 0.8854           | 0.8386           |
| R5 (Ω)                          | 1451              | 814              | 238              | 236              |

# Fitted impedance values from FAST/SPS-sintered and heat-treated Al-LNMO/LLTO

|                                 | FAST/SPS- | 30 min heat- | 1 h heat- | 2 h heat- | 4 h heat- |
|---------------------------------|-----------|--------------|-----------|-----------|-----------|
|                                 | sintered  | treated      | treated   | treated   | treated   |
| R1 (Ω)                          | 46        | 46           | 48        | 43        | 46        |
| <b>Q2</b> $(F \cdot s^{a-1})$   | 1.54E-9   | 2.91E-9      | 6.26E-9   | 1.04E-9   | 1.12E-9   |
| a2                              | 0.8912    | 0.821        | 0.7624    | 0.8689    | 0.8667    |
| R2 (Ω)                          | 155       | 455          | 452       | 452       | 504       |
| <b>Q3</b> ( $F \cdot s^{a-1}$ ) | 6.75E-7   | 1.06E-6      | 5.27E-7   | 5.61E-7   | 3.69E-7   |
| a3                              | 0.5826    | 0.5581       | 0.6687    | 0.6037    | 0.6418    |
| R3 (Ω)                          | 1445      | 1431         | 491       | 1059      | 1062      |
| <b>Q4</b> ( $F \cdot s^{a-1}$ ) | 2.58E-5   | 7.76E-6      | 1.09E-5   | 1.02E-5   | 1.15E-5   |
| a4                              | 0.4505    | 0.6366       | 0.7296    | 0.7071    | 0.7422    |
| R4 (Ω)                          | 5918      | 4037         | 1341      | 2136      | 2109      |
| <b>Q5</b> ( $F \cdot s^{a-1}$ ) | 8.56E-7   | 4.27E-6      | 4.33E-6   | 4.79E-6   | 6.44E-6   |
| a5                              | 0.6417    | 0.7239       | 0.811     | 0.7902    | 0.7975    |
| R5 (Ω)                          | 3925      | 979          | 391       | 610       | 583       |

Table S4. Fitted impedance values from as-sintered and annealed Al-LNMO/LLTO.

#### Reference

1. Wang, J.; Lin, W.; Wu, B.; Zhao, J., Syntheses and electrochemical properties of the Na-doped  $LiNi_{0.5}Mn_{1.5}O_4$  cathode materials for lithium-ion batteries. *Electrochimica Acta* 2014, *145*, 245-253.

https://doi.org/10.1016/j.electacta.2014.07.140