Supporting Information for

Nonafluorobutyl Ether Enhancing Stability of Fluorobenzene-based Diluted

High-Concentration Electrolyte in High-Voltage Lithium Metal Batteries

Xinlan Wang,^{ab} Ziqi Zeng,*^a Han Zhang,^a Yixuan Dong,^a Shijie Cheng^a and Jia Xie*^a

^a State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: <u>ziqizeng@hust.edu.cn</u>, <u>xiejia@hust.edu.cn</u>.

^b State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

FB-CNFE-DHCE					
43.6 °	32.7 °				
3.0:0	2.8:0.2				
30.7 °	26.4 °				
2.6:0.4	2.4:0.6				

Fig. S1 Wettability tests of separator contact with different electrolytes.

Fig. S2 Ionic conductivity of different electrolytes of -40 to 40 °C.

Fig. S3 (a) EIS results before the LSV tests. (b) LSV curves of FB-DHCE and FB-CNFE-DHCE from 1 V to 0 V.

Fig. S4 Discharge-charge curves of the cells at 200th cycle in the different electrolytes.

Fig. S5 Cycling performance of Li||Li cells at 0.5 mA cm⁻².

Fig. S6 Tafel plots for Li stripping/plating in the different electrolytes.

Fig. S7 The full XPS of deposited Li in different electrolytes.

Fig. S8 CV curves of the initial cycles for Li $\|NCM811$ cell under different electrolytes (3 - 4.4 V, 0.1 mV s⁻¹).

Fig. S9 Cycling performance of Li $\|$ LCO cells (LCO loading: 3 mg cm⁻²) with different electrolytes, cycled between 3.0 and 4.5 V at 1 C charge and 2 C discharge.

Fig. S10 Cycling performance of (a) Li $\|NCM622$ cells (NCM622 loading: 20 mg cm⁻²) and (b) Li $\|NCM712$ cells (NCM712 loading: 20 mg cm⁻²) with different electrolytes, cycled between 3.0 and 4.4 V at 0.33 C charge and 0.66 C discharge.

Fig. S11 The in-situ EIS spectra of Li||NCM811 cell in FB-DHCE. The initial cycle charge and discharge profile are plotted at left side of each spectrum.

Fig. S12 The in-situ EIS spectra of Li||NCM811 cell in FB-CNFE-DHCE.

Fig. S13 SEM images of NCM811 (a)uncycled and after cycling at 4.4 V in (b) FB-DHCE and (c) FB-CNFE-DHCE.

Fig. S14 Photographs and pH results of FB-CNFE-DHCE, FB-DHCE, TTE-DHCE, and FEC-DHCE before storage.

Atomic Conc. %	С	0	F	N	S
FB-DHCE	37.35	51.48	5.08	2.67	3.42
FB-CNFE-DHCE	34.19	55.58	6.11	1.75	2.37

Table S1. Chemical element on Li metal films in different electrolytes.

Table S2. Chemical element on NCM811 films in different electrolytes.

Atomic Conc. %	С	0	F	Ν	S
FB-DHCE	32.63	43.03	21.37	1.11	1.87
FB-CNFE-DHCE	30.74	41.8	25.11	0.91	1.45