Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

The Interplay of Chemical Bonding and Thermoelectric Properties in Doped Cubic GeTe

Sree Sourav Das,^a Safoura Nayeb Sadeghi, ^b Keivan Esfarjani ^{b,c,d} and Mona Zebarjadi *a,c

Number of Bands for projections:

To determine the required number of wavefunctions for the projection from plane waves to atomic orbitals for COHP calculation, the DFT calculations must include enough bands in the self-consistent calculations. The number of bands depends on the structure and the basis used for the projection in LOBSTER. The calculation of the minimum number of bands for different supercells is discussed here.

For GeTe,

With the basis: Ge(4s²4p²3d¹⁰), Te(5s²5p⁴4d¹⁰).

There are 27 Ge atoms and 27 Te atoms in the supercell.

Minimum number of bands:

 $\frac{27[2(Ge-4s)+2(Ge-4p)+10(Ge-3d)+2(Te-5s)+4(Te-5p)+10(Te-4d)]}{2} = 405$

For Pb:GeTe, 2 Ge atoms is replaced by Pb atoms With the basis: Pb(6s²6p²5d¹⁰) Minimum number of bands:

$$\frac{25[2(Ge-4s)+2(Ge-4p)+10(Ge-3d)]+27[2(Te-5s)+4(Te-5p)+10(Te-4d)]+2}{2}$$
= 405

For Bi:GeTe, 2 Ge atoms is replaced by Bi atoms

With the basis: Bi(6s²6p³5d¹⁰)

Minimum number of bands:

$$\frac{25[2(Ge-4s)+2(Ge-4p)+10(Ge-3d)]+27[2(Te-5s)+4(Te-5p)+10(Te-4d)]+2}{2}$$

= 406

For Sb:GeTe, 2 Ge atoms is replaced by Sb atoms

With the basis: Sb(5s²5p³)

Minimum number of bands:

 $\frac{25[2(Ge-4s)+2(Ge-4p)+10(Ge-3d)]+27[\ 2(Te-5s)+4(Te-5p)+10(Te-4d)]+2[2(Sb-5s)+3(Sb-5p)]}{2}$

For In:GeTe, 2 Ge atoms is replaced by In atoms

With the basis: In(5s²5p¹4d¹⁰)

=

Minimum number of bands:

$$\frac{25[2(Ge-4s)+2(Ge-4p)+10(Ge-3d)]+27[2(Te-5s)+4(Te-5p)+10(Te-4d)]+27[2(Te-5s)+4(Te-5p)+10(Te-5d)]+27[2(Te-5s)+4(Te-5p)+10(Te-5d)]+27[2(Te-5s)+4(Te-5p)+10(Te-5d)]+27[2(Te-5s)+4(Te-5p)+10(Te-5d)]+27[2(Te-5s)+4(Te-5p)+10(Te-5d)]+27[2(Te-5s)+4(Te-5p)+10(Te-5d)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)+10(Te-5a)]+27[2(Te-5a)+10(Te-5a)+10(Te-5a)]+27[2(Te-5a)+1$$

Summary of dopant elements in GeTe:

As-grown GeTe is predominantly a highly p-doped degenerate narrow gap semiconductor due to a high level of Ge vacancies. The introduction of additional dopants in GeTe is to lower the high hole concentration by effective suppression of intrinsic Ge vacancies and concurrently modifying the electronic structure. In recent years, significant efforts have been made to improve the performance of GeTe by introducing different dopants in it as shown in Fig. 1 in the main text. Fig. S1 summarizes the collective insights gleaned from the literature, showcasing the impactful advancements made in recent years.

									-		-	-	-		-	-	-
1 H Hydrogen lightblac																	2 He Helium lighthlac
3 Li Lithium lightbluc	4 Be Berylliam lightblac											5 B Boren lightblac	6 C Carlson lighthac	7 N Nitrogen lighthac	8 O Oxygen lighthuc	9 F Fluorine lightblue	10 Ne Ncon lighthac
11 Na Sodiam lightblac	12 Mg Magnesium orange											13 Al Aluminum orange	14 Si Silicon lightblac	15 P Phosphorus lightblue	16 S Sulfur lightbluc	17 Cl Chlorine lightblue	18 Ar Argen lighthac
19 K Potassian lightblac	20 Ca Calcium lighthluc	21 Sc Scardium orange	22 Ti Titunium orange	23 V Vienalium orange	24 Cr Chronian orange	25 Mn Manganese orange	26 Fe Iren Tighthac	27 Co Cobalt lightblac	28 Ni Nickel lighthuc	29 Cu Copper orange	30 Zn Zinc oranje	31 Ga Galliam Tighthac	32 Ge Germanium Tightbluc	33 As Arsenic lighthac	34 Se Selenium Tighthuc	35 Br Bromine Eighthe	36 Kr Krypten lightblae
37 Rb Rubidiam lightblac	38 Sr Strentiam lightfhac	39 Y Yttrium orange	40 Zr ^{Zireconium} orange	41 Nb Niobiurs lightblac	42 Mo Molybdenum lightblue	43 Tc Technetium lighthuc	44 Ru Rutherium lightfue	45 Rh Rhoclium lightblac	46 Pd Pallation lightblac	47 Ag Silver orange	48 Cd Cadinium orange	49 In Inclian orange	50 Sn Tin orange	51 Sb Antimony orange	52 Te Tellurium lighthuc	53 I lectine lightblue	54 Xee Xenen lighthlac
55 Cs Cesium lightblue	56 Ba Barium Tighthlac	57 La Laetharum lightblac	72 Hf Hafnium lighthlac	73 Ta Tantalam lighthic	74 W Tungsten lightshue	75 Re Rhenium orange	76 Os Omium lighthic	77 Ir Irdium lighthac	78 Pt Platimen lightblac	79 Au Gold Bighthiac	80 Hg Mercury lighthac	81 T1 Thallium lighthac	82 Pb Lead orange	83 Bi Bismath orange	84 Po Polenium lightfuc	85 At Astatine lighthae	86 Rn Radon Eighthiac
87 Fr Francium lightbluc	88 Ra Rathum lightblac	89 Ac Actinium lightbluc	104 Rf Rutherfordium lightblue	105 Db Dubnium lightfilac	106 Sg Scobergium lightbluc	107 Bh Bohrium lighthiac	108 Hs Hassiam lighthac	109 Mt Meitnerium lightfilee	110 Ds Dernstadium lightbluc	111 Rg Recentgenium lighthac	112 Cn Copernicium lighthlae	113 Nh Nibenium lightblue	114 F1 Flerovium lightblue	115 Mc Moscoviam lighthac	116 Lv Livennorium lighthuc	117 Ts Tennessine Sightblue	118 Og Ogancsson lighthac
		58	50	60	61	62	63	64	65	66	67	68	60	70	71		
		Ce Cerium lighthue	Prescodymiam lighthlac	Nd Ncodymiam lighthac	Pm Promethium lighthue	Samarium lighthiac	Eu Faropium lightblac	Gd Gastolinium lighthlac	Tb Terbium lighthiae	Dy Dyoprosium lightbluc	Ho Holmium lightblac	Er Ertöum orange	Tm Thulium lighthuc	Yb Yucebiam lighthiac	Lu Latetian orange		
				1													

Fig. S1 Summary of recently used dopant materials (orange color) in GeTe achieving zT>1.0

Np

Pu

 Am

Phonon Dispersion:

Th

Pa

U

As cubic-GeTe is not thermodynamically stable at room temperature, vibrational modes are stabilized by a finite temperature of 800 K in TDEP calculations as depicted in Fig. 5(b) whereas density functional perturbation calculation reveals imaginary phonon modes as shown in Fig. S2.

Cm

Bk

Cf

Es

Fm

Md

No

Fig. S2 Phonon dispersion computed from dynamical matrix using 4x4x4 q-point mesh.

Elastic constants from group velocities:

In a cubic crystal, using elasticity theory, it is possible to extract the 3 independent elastic constants from the acoustic group velocities along [110] direction. We have used the following relations to complete the table 2 in the main text:

$$\rho v_{t,z}^2 = C_{44}; \rho v_{t,xy}^2 = \frac{(C_{11} - C_{12})}{2}; \rho v_l^2 = \frac{(C_{11} + C_{12})}{2} - C_{44}$$

Where the mass density ρ =6115.5 kg/m³; and for q=[110] the two transverse group velocities are polarized along z (for the shear mode C₄₄), and in the xy plane.

Convergence Study of K-mesh and q-mesh:

Before performing the transport calculations, convergence of electron-phonon scattering rates has been performed with varying k-mesh and q-mesh. Fig. S3(a-b) depicts the change in electron-phonon scattering rates with q-mesh and k-mesh. It is evident that k-mesh of $60 \times 60 \times 60$ and q-mesh 5×10^6 would be enough to reach convergence. This has been further validated by transport properties as shown in Fig. S3(c-d).

Fig. S3 Convergence study of K-mesh and q-mesh (a) q-mesh dependent electron-phonon scattering rates with fixed k-mesh 60 \times 60 \times 60, (b) K-mesh dependent electron-phonon scattering rates with fixed q-mesh of 5 \times 10⁶, (c) electrical conductivity, (d) Seebeck coefficient including only electron-phonon scattering with respect to different k-mesh and q-mesh.

Valence electron wavefunction:

As explained in the main text, the conduction band of cubic-GeTe is governed by Ge(p) orbital and the valence band is from Ge(s) and Te(p) orbitals. This is revealed by electron wavefunction plot in Fig. S4 where Fig. S4(a) & (b) shows the Ge(p)-Te(p) interactions and Ge(s)-Te(p) interactions, respectively.

Fig. S4 Isosurfaces of the valence electron wavefunction at (a) 20% of the isovalue (Ge(p)-Te(p) interactions), (b) 10% of isovalue (Ge(s)-Te(p) interactions). Projected Density of States:

Fig. S5 Projected density of states (PDOS) (a) Pb doped GeTe, (b) Bi doped GeTe, (c) Sb doped GeTe, and (d) In doped GeTe. The contribution of orbital projected PDOS to total DOS in Fig. S6 shows that s-contribution from dopants (X) in valance band decreases as X=In, Pb, Sb, Bi. Except Indium, other dopants do not have significant effect on total dos (Fig. S6(e)) rather than changing the fermi level.

Fig. S6 Contribution of s and p orbital on DOS (a) Pb doped GeTe, (b) Bi doped GeTe, (c) Sb doped GeTe, (d) In doped GeTe, w.r.t valence band minimum and (e) total DOS w.r.t fermi level for all samples.

Table S1: ICOHP of s-p interactions in doped GeTe showing that the Te-X bonds become more antibonding (weaker) as X=In, Ge, Sb, Pb, Bi

Bonding	ICOHP for s-p (eV)
In-Te	-0.34
Ge-Te	-0.132
Sb-Te	-0.11
Pb-Te	-0.094
Bi-Te	-0.072

Electronic Band Structure comparison:

Fig. S7 (a) shows the electronic band structure with and without spin-orbit coupling (SOC). There is no significant effect of SOC on electronic band structure near the fermi level. Also wannierized band structure coincides well with DFT band structure.

Fig. S7 (a) Electronic band structure with and without SOC, (b) Comparison between

wannierized and DFT band structure.

Screening length:

Screening length is a strong function of carrier concentration compared to temperature as depicted in Fig. S8. At very high concentrations, electron-impurity screening length is shorter than low concentrations.

Fig. S8 Screening length versus carrier concentration at different temperatures.

Transport Properties of cubic-GeTe:

Semiclassical Boltzmann Transport formula under energy dependent relaxation time has been used for transport calculation. Temperature and carrier concentration dependent transport coefficients are shown in Fig. S9.

Fig. S9 Transport properties based on RTA (a) electrical conductivity, (b) Seebeck coefficient, (c) Electronic thermal conductivity, and (d) Lattice thermal conductivity.