Push-Pull-Pull Interactions of 2D Imide-Imine based Covalent Organic Framework to Promote Charge Separation in Photocatalytic Hydrogen Production

Islam M. A. Mekhemer ${ }^{\text {a,b\# }}$, Mohamed M. Elsenety, ${ }^{\text {c,a\# }}$, Ahmed M. Elewa ${ }^{\text {a }}$, Khanh Do Gia Huynh ${ }^{\text {a }}$, Maha Mohamed Samy ${ }^{\text {b,d }}$, Mohamed Gamal Mohamed ${ }^{\text {b,d, }}$, Dalia M. Dorrah ${ }^{\text {a }}$, Dung Chau Kim Hoanga, Ahmed Fouad Musa ${ }^{\text {a }}$, Shiao-Wei Kuo ${ }^{\text {d }}$, and Ho-Hsiu Chou ${ }^{\text {a,e, f* }}$
${ }^{\text {a}}$ Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
${ }^{\mathrm{b}}$ Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
${ }^{\text {c }}$ Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
${ }^{\text {d Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun }}$
Yat-Sen University, Kaohsiung 804, Taiwan.
${ }^{\mathrm{e}}$ College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan.
fPhotonics Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan.

[^0]
1. Materials and Methods

Anhydrous potassium carbonate, 1,2,4,5-tetrabromobenzene, (4-formyl phenyl) boronic acid, 1,3,6,8-tetrabromopyrene, tetrakis(triphenylphosphine)palladium(0), and silica gel for column chromatography were purchased from commercial sources. All organic solvents such as methanol, tetrahydrofuran (THF), acetone, nitrobenzene, mesitylene, pdioxane, trifluoroacetic acid, and dichloromethane (DCM) were analytical grade reagents used without further purification.

2. Characterization

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrophotometer with a resolution of $4 \mathrm{~cm}^{-1}$ by using the KBr disk method. ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were examined using an INOVA 500 instrument with DMSO and CDCl_{3} as the solvent and TMS as the external standard. Chemical shifts are reported in parts per million (ppm). The thermal stabilities of the samples were performed by using a TG Q-50 thermogravimetric analyzer under an N_{2} atmosphere; the cured sample (ca. 5 mg) was put in a Pt a cell with a heating rate of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from 100 to $800^{\circ} \mathrm{C}$ under an N_{2} flow rate of $60 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. Wide-angle X-ray diffraction (WAXD) patterns were measured by the wiggler beamline BL17A1 of the National Synchrotron Radiation Research Center (NSRRC), Taiwan. The morphologies of the polymer samples were examined by Field emission scanning electron microscopy (FE-SEM; JEOL JSM7610F) and by transmission electron microscope (TEM) using the JEOL-2100 instrument at an accelerating voltage of 200 kV . BET surface area and porosimetry measurements of samples (ca. $40-100 \mathrm{mg}$) were measured using BEL Master ${ }^{\mathrm{TM}} / \mathrm{BEL} \operatorname{sim}^{\mathrm{TM}}$ (v. 3.0.0). N_{2} adsorption and desorption isotherms were generated through incremental exposure to ultrahigh-purity N_{2} (up to ca. 1 atm) in a liquid $\mathrm{N}_{2}(77 \mathrm{~K})$ bath. Surface parameters were calculated using BET adsorption models in the instrument's software. The prepared samples' pore size was determined using nonlocal density functional theory (NLDFT). We recorded the photoluminescence (PL) conductance of the COF-based imide-imine linkage from the fluorescence emission spectra of their corresponding solutions via Hitachi 11 F-7000 spectrophotometer equipped with a

Xenon lamp ($\lambda=250 \sim 800 \mathrm{~nm}$), We dissolved these COFs in N-methyl pyrrolidine at 1 $\mathrm{mg} \mathrm{mL}^{-1}$, as the limiting concentration, followed by excitation with light at 350 nm . Ultraviolet/visible diffuse reflectance spectroscopy (UV-Vis DRS) of synthesized COPs were detected via a Hitachi U-3300 spectrophotometer. Electrochemical Impedance Spectroscopy (EIS) was performed on a Zahner Zennium E workstation equipped with a three-electrode cell including a Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode $(3 \mathrm{M} \mathrm{NaCl})$, and a fluorine-doped tin oxide (FTO) glass as working electrode. About 5 mg of COFs were dispersed into an acetonitrile solution (1 mL) with $30 \mu \mathrm{~L}$ Nifion and sonicate for 1 h . After that, $200 \mu \mathrm{~L}$ of as-prepared suspension was spin-coated on FTO glass with an active area of $6.875 \mathrm{~cm}^{2}$. Here, $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution was prepared as an electrolyte. 1.5 V constant potential was applied under LED light irradiation ($300 \mathrm{~W} / \mathrm{cm}^{2}$). The COF photocatalysts time-resolved photoluminescence (TRPL) spectra were measured on a spectrometer (FLS980, Edinburgh Instruments) with a gated photomultiplier tube. The energy levels of the HOMO were measured using a photoelectron spectrometer (model AC-2). The energy levels of the LUMOs were calculated by subtracting the Eg from the HOMO energy levels.

3. Synthetic Procedures of Monomers

Scheme S1: 1,2,4,5-Tetrakis-(4-formylphenyl)benzene (TFPB-4CHO).

TFPB-4CHO was prepared according to the reported method with some modifications ${ }^{1}$. We added 1,2,4,5-Tetrabromobenzene ($1.5 \mathrm{~g}, 3.033 \mathrm{mmol}$), 4-formylphenylboronic acid $(3.638 \mathrm{~g}, 24.264 \mathrm{mmol})$, palladium tetrakis(triphenylphosphine) ($0.175 \mathrm{~g}, 0.15 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), and anhydrous potassium carbonate $(6.716 \mathrm{~g}, 48.520 \mathrm{mmol}$) in p-Dioxane (50 mL) in the sealed tube $(250 \mathrm{~mL})$ and then degassed under argon for 20 minutes and heated the mixture for 72 h at $120^{\circ} \mathrm{C}$. The suspension reaction mixture was poured into slurry ice containing 60 mL of concentrated hydrochloric acid to neutralize the excess potassium carbonate. The solid product was filtered and washed thrice with water and 2 M HCl . The crude product was purified using short-column chromatography with dichloromethane as eluent. The DCM was evaporated under reduced pressure to obtain the final product as a yellowish powder ($1.7 \mathrm{~g}, 90.4 \%$). FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1} ; 3038$ (CH aromatic), 2827, 2740 $(\mathrm{HC}=\mathrm{O}), 1699(\mathrm{C}=\mathrm{O}), 1606$ and $1576(\mathrm{C}=\mathrm{C})$ (Figure 2a); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.98(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CHO}), 7.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 8 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 8 \mathrm{H})$ (Figure S1); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) δ 191.64, 146.07, 139.72, 135.32, 132.82, 130.43, 12 9.70 (Figure S2); Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 82.58; H, 4.48; O, 12.94\%. Found: C, 82.40; H, 4.42; O, 12.97\%.

Scheme S2: Synthesis of 1,3,6,8-Tetra(4-formylphenyl)pyrene (PyTP-4CHO).
PyTP-4CHO was prepared according to the reported method with some modifications ${ }^{2}$. A mixture of $\mathrm{Py}-4 \mathrm{Br}(0.54 \mathrm{~g}, 1.1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.06 \mathrm{~g}, 0.05 \mathrm{mmol})$, $4-$ formylphenylboronic acid ($0.98 \mathrm{~g}, 6.53 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.30 \mathrm{~g}, 16.64 \mathrm{mmol})$ was degassed under vacuum. Dioxane (50 mL) was added, and then the mixture was heated at $85^{\circ} \mathrm{C}$ for three days. The contents were poured onto ice-cold $\mathrm{H}_{2} \mathrm{O}$ and neutralized with $\mathrm{HCl}(2 \mathrm{~mL})$ to dissolve any remaining $\mathrm{K}_{2} \mathrm{CO}_{3}$. The precipitate was filtered off, washed with MeOH , recrystallized from 1,4-dioxane, and dried to produce a yellow powder (85%). FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}, 3041$ (CH aromatic), 2813, 2727 ($\mathrm{H} \mathbf{C = O}$), 1693 (C=O), 1606 (C=C) (Figure 2b). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.14$ (s, 4H, CHO), 8.15 ($\mathrm{s}, 4 \mathrm{H}$), 8.07 (d, J = $8.0 \mathrm{~Hz}, 8 \mathrm{H}$), 8.02 (s, 2H), $7.84(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 8 \mathrm{H})$ (Figure S3). ${ }^{13} \mathrm{CNMR}$ result of PyTP4 CHO cannot be provided due to its poor solubility; Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{26} \mathrm{O}_{4}$: C, 85.42; H, 4.24; O, 10.34 \%. Found: C, 85.67; H, 4.18; O, 11.02 \%.

Scheme S3: Preparation of Naphthalenediimide diamine ($\mathrm{DNI}-2 \mathrm{NH}_{2}$)
DNI- $2 \mathrm{NH}_{2}$ was prepared according to the reported method with some modifications ${ }^{3}$. To a round bottom flask equipped with a stir bar and condenser was added the naphthaleneanhydride ($750 \mathrm{mg}, 2.8 \mathrm{mmol}$) and diaminobenzene ($3.02 \mathrm{~g}, 28.0 \mathrm{mmol}$) under inert conditions. The solids were dissolved in 50 mL of anhydrous DMF. Triethylamine ($2.6 \mathrm{~mL}, 18.7 \mathrm{mmol}$) was added, and the reaction was heated to reflux for 20h. The reaction was cooled, filtered and the resulting mixture was filtered, and the residue was washed with copious amounts of water, acetone and then chloroform. The brownish red solid was isolated pure in a 95% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}$) $\delta 8.68$ (s, 4H), $7.00(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.65$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.29$ (s, 4H) (Figure S4).

4. Synthetic Procedures of COFs

Scheme S4: Synthesis of TFPB-DNII-COF.
A 10 mL heavy-walled sealed tube was filled with 1,2,4,5-Tetrakis-(4formylphenyl)benzene (TFPB-4CHO) ($11.03 \mathrm{mg}, 0.022 \mathrm{mmol}$), Naphthalenediimide diamine $\left(\mathrm{DNI}-2 \mathrm{NH}_{2}\right)(20.00 \mathrm{mg}, 0.044 \mathrm{mmol}), 1.00 \mathrm{~mL}$ of nitrobenzene, and 1.00 mL of mesitylene. The reaction mixture was sonicated for 5 minutes, then $10 \mu \mathrm{~L}$ of trifluoroacetic acid (TFA) was added, followed by another 10 minutes of sonication. The tube was plunged into liquid nitrogen, flash-frozen at 77 K , and evacuated to an internal pressure of 100 mTorr . The reaction was then heated to $120^{\circ} \mathrm{C}$ for 4 days, resulting in the precipitation of COFs. The solid was isolated by filtration and thoroughly washed with acetone, THF, methanol, and ether. Subsequently, it was subjected to overnight Soxhlet extraction with methanol. Finally, the activated TFPB-DNII-COF was obtained by oven vacuum activation at $80^{\circ} \mathrm{C}$ for 8 h .

Scheme S4: Synthesis of Py-DNII-COF.
A 10 mL heavy-walled sealed tube was filled with 1,3,6,8-Tetra(4-formylphenyl)pyrene (PyTP-4CHO) ($13.79 \mathrm{mg}, 0.022 \mathrm{mmol}$), Naphthalenediimide diamine (DNI-2NH2) (20.00 $\mathrm{mg}, 0.044 \mathrm{mmol}), 1.00 \mathrm{~mL}$ of nitrobenzene, and 1.00 mL of mesitylene. The reaction mixture was sonicated for 5 minutes, then $10 \mu \mathrm{~L}$ of trifluoroacetic acid (TFA) was added, followed by another 10 minutes sonication. The tube was plunged into liquid nitrogen, flashfrozen at 77 K , and evacuated to an internal pressure of 100 mTorr . The reaction was then heated to $120^{\circ} \mathrm{C}$ for 4 days, resulting in the precipitation of COFs. The solid was isolated by filtration and thoroughly washed with acetone, THF, methanol, and ether. Subsequently, it was subjected to overnight Soxhlet extraction with methanol. Finally, the activated Py-DNII-COF were obtained by oven vacuum activation at $80^{\circ} \mathrm{C}$ for 8 h .

Figure S1: ${ }^{1} \mathrm{H}$ NMR of TFPB-4CHO in CDCl_{3}

Figure S2: ${ }^{13} \mathrm{C}$ NMR of TFPB-4CHO in CDCl_{3}.

Figure S3: ${ }^{1} \mathrm{H}$ NMR of PyTP-4CHO in CDCl_{3}.

Figure S4: ${ }^{1} \mathrm{H}$ NMR for $\mathrm{DNI}-2 \mathrm{NH}_{2}$.

Figure S5: a) Indexed PXRD pattern of the activated sample of TFPB-DNII-COF (black) and the Pawley fitting (red) from the modeled structure, b) Simulated model for TFPB-DNII-COF (Top view), c) and side view of AA stacking.

Figure S6: a) SEM and b) TEM images of TFPB-DNII-COF with lattice strip parameters.

Figure S7: a-d) Core-level deconvolution spectra of C 1s and O 1s for both Py-DNII and TFPBDNII COFs.

Figure S8: Nitrogen adsorption and desorption isotherms of Py-DNII-COF and TFPB-DNII-COF recorded at $77^{\circ} \mathrm{K}$.

Figure S9: Pore size distribution curves of Py-DNII-COF and TFPB-DNII-COF.

Figure S10: Thermogravimetric analysis of Py-DNII-COF (a), and TFPB-DNII-COF (b).

Figure S11: Tauc plot for both COFs.

b)

Figure S12: Ultraviolet photoemission spectroscopy (UPS) measurement of a) Py-DNII-COF and b) TFPB-DNII-COF.

Figure S13: a) onset potential of the first oxidation peak of Cyclic voltammetry for imide-imine based COFs using $\mathrm{Ag} / \mathrm{AgCl}$ as a reference electrode based on the following equation (E-HOMO $\left.\left.=\mathrm{E}_{\mathrm{ox}, \text { onset }}-\mathrm{E}_{\text {Ref }}+4.4\right) \mathrm{eV}, \mathrm{E}_{\text {Ref }}=0.159+0.059 * \mathrm{pH}\right), \mathrm{b}$) inset of schematic energy levels diagram.

Figure S14: Time dependent HER of Py-DNII-COF photocatalysts under 380-780 nm irradiation (1.00 mg of COF powder and 10 mL of a mixed solution consisting of $80 \mathrm{vol} . \%$ $\mathrm{H}_{2} \mathrm{O}, 20 \mathrm{vol} . \% \mathrm{NMP}, 0.1 \mathrm{M}$ of AA as SED, and 2, 4, and $6 \mathrm{wt} \% \mathrm{Pt}$ as co-catalyst, respectively).

Figure S15: Time dependent HER of Py-DNII-COF photocatalysts under 380-780 nm irradiation (1, 3 and 5 mg of COF powder and 10 mL of a mixed solution consisting of 80 vol. $\% \mathrm{H}_{2} \mathrm{O}, 20$ vol. $\%$ NMP, 0.1 M of AA as SED, and $2 \mathrm{wt} \% \mathrm{Pt}$ as co-catalyst).

Figure S16: AQY \% of imide-imine based COFs.

Figure S17: Correlation between the apparent quantum yield (AQY) and the UV-vis absorption spectra of Py-DNII-COF.

Figure S18: HER of Py-DNII-COF in the presence and absence of co-solvent (NMP).

Table S1: Atomic parameters of Py-DNII-COF

Atom	Ox. Wyck.	Site S.O.F.	x/a	y/b	z/c	$\mathbf{U}\left[\AA^{\mathbf{2}}\right]$
N1	1a	1	-3.16178	0.39223	-0.34356	0.0000
C2	1a	1	-3.88796	-0.00333	-0.31684	0.0000
C3	1 a	1	-3.56742	0.27151	-0.34758	0.0000
C4	1a	1	-3.50889	0.31556	-0.33855	0.0000
C5	1a	1	-3.33270	0.30842	-0.36656	0.0000
C6	1 a	1	-3.21849	0.25698	-0.40391	0.0000
C7	1 a	1	-3.27722	0.21264	-0.41292	0.0000
C8	1 a	1	-3.52421	0.19480	-0.22985	0.0000
C9	1 a	1	-3.49876	0.23483	-0.19306	0.0000
C10	1 a	1	-3.44990	0.28278	-0.17883	0.0000
C11	1a	1	-3.42412	0.29003	-0.20168	0.0000
C12	1a	1	-3.45038	0.24995	-0.23838	0.0000
C13	1a	1	-3.66250	-0.02560	-0.38030	0.0000
C14	1a	1	-3.72185	-0.06691	-0.38550	0.0000
C15	1a	1	-3.83853	-0.05514	-0.35224	0.0000
C16	1a	1	-3.82791	0.03664	-0.31293	0.0000
C17	1 a	1	-3.71397	0.02654	-0.34409	0.0000
C18	1 a	1	-3.50295	0.20152	-0.25338	0.0000
C19	1 a	1	-3.44602	0.21922	-0.38466	0.0000
C20	1a	1	-3.61610	0.03869	-0.48022	0.0000
C21	1a	1	-3.64252	0.07141	-0.33728	0.0000
C22	1 a	1	-3.59929	0.11476	-0.30196	0.0000
C23	1 a	1	-3.53832	0.16046	-0.29056	0.0000
C24	1 a	1	-3.52195	0.16261	-0.31681	0.0000
C25	1 a	1	-3.46357	0.20670	-0.30794	0.0000
C26	1a	1	-3.45277	0.20938	-0.33311	0.0000
C27	1a	1	-3.65142	0.03454	-0.42446	0.0000
C28	1 a	1	-3.66692	0.03200	-0.39907	0.0000
C29	1 a	1	-3.62320	0.07362	-0.36334	0.0000
C30	1 a	1	-3.56498	0.11934	-0.35306	0.0000
C31	1a	1	-3.52861	0.12818	-0.42957	0.0000
C32	1 a	1	-3.57895	0.08176	-0.44116	0.0000
C33	1a	1	-3.59345	0.07890	-0.41532	0.0000
C34	1 a	1	-3.55284	0.12207	-0.37906	0.0000
C35	1a	1	-3.50124	0.16813	-0.36857	0.0000
C36	1 a	1	-3.49313	0.17159	-0.39394	0.0000
C37	1a	1	-3.49075	0.42849	-0.39141	0.0000
C38	1 a	1	-3.38672	0.39800	-0.38443	0.0000
C39	1 a	1	-3.28111	0.42164	-0.35166	0.0000
C40	1a	1	-3.28029	0.47535	-0.32629	0.0000
C41	1 a	1	-3.38608	0.50568	-0.33309	0.0000
C42	1 a	1	-3.49141	0.48277	-0.36564	0.0000
O43	1 a	1	-4.00161	0.58319	-0.31476	0.0000
O44	1a	1	-3.20592	0.45118	-0.43032	0.0000
C45	1 a	1	-3.42671	0.49662	-0.40522	0.0000
N46	1 a	1	-3.59639	0.51516	-0.37214	0.0000
C47	1a	1	-3.84703	0.56673	-0.34383	0.0000
C48	1 a	1	-3.92803	0.60305	-0.34803	0.0000
C49	1 a	1	-4.17304	0.65578	-0.31901	0.0000
C50	1 a	1	-3.31648	0.51551	-0.44245	0.0000
C51	1 a	1	-3.50031	0.53248	-0.41002	0.0000
C52	1a	1	-3.74686	0.58521	-0.38088	0.0000
C53	1 a	1	-3.24655	0.35102	-0.35609	0.0000
C54	1 a	1	-3.61104	-0.01307	-0.49737	0.0000
C55	1 a	1	-3.63861	-0.05266	-0.53414	0.0000
C56	1 a	1	-3.67063	-0.04113	-0.55455	0.0000
C57	1 a	1	-3.67609	0.01004	-0.53794	0.0000
C58	1 a	1	-3.64960	0.04948	-0.50120	0.0000
C59	1a	1	-3.53782	0.54768	0.05449	0.0000
C60	1a	1	-3.50245	0.59278	0.09369	0.0000
C61	1 a	1	-3.37661	0.57370	0.11104	0.0000
C62	1a	1	-3.54719	0.53181	0.10071	0.0000
C63	1 a	1	-3.45837	0.48540	0.05856	0.0000
N64	1a	1	-3.49532	0.49547	0.03757	0.0000
C65	1 a	1	-3.41626	0.51292	0.11787	0.0000
O66	1 a	1	-3.35189	0.43881	0.04317	0.0000

O67	1a	1	-3.60657	0.55891	0.03784	0.0000
C68	1a	1	-3.48660	0.45149	-0.00197	0.0000
C69	1 a	1	-3.58609	0.40620	-0.01586	0.0000
C70	1a	1	-3.57801	0.36408	-0.05361	0.0000
C71	1a	1	-3.47403	0.36644	-0.07842	0.0000
C72	1a	1	-3.37449	0.41126	-0.06510	0.0000
C73	1a	1	-3.37826	0.45290	-0.02747	0.0000
N74	1a	1	-3.48434	0.32396	-0.11657	0.0000
C75	1a	1	-3.43136	0.32627	-0.14012	0.0000
C76	1a	1	-3.68553	-0.08213	-0.59360	0.0000
C77	1a	1	-3.87898	-0.09641	-0.35463	0.0000
C78	1a	1	-4.09485	-0.28827	-0.35762	0.0000
C79	1a	1	-4.04844	-0.32617	-0.35475	0.0000
C80	1a	1	-3.80618	-0.37908	-0.38417	0.0000
C81	1a	1	-3.61629	-0.39604	-0.41642	0.0000
C82	1a	1	-3.66001	-0.35667	-0.41813	0.0000
N83	1a	1	-3.89202	-0.30381	-0.38849	0.0000
C84	1a	1	-3.37376	-0.44904	-0.44560	0.0000
O85	1a	1	-3.47867	-0.37101	-0.44546	0.0000
086	1a	1	-4.31249	-0.24267	-0.33204	0.0000
C87	1a	1	-3.89897	-0.26335	-0.38792	0.0000
C88	1a	1	-3.90246	-0.27495	-0.41994	0.0000
C89	1a	1	-3.89244	-0.23588	-0.41908	0.0000
C90	1a	1	-3.88103	-0.18466	-0.38617	0.0000
C91	1a	1	-3.88065	-0.17302	-0.35419	0.0000
C92	1a	1	-3.88868	-0.21184	-0.35514	0.0000
N93	1a	1	-3.85659	-0.14548	-0.38575	0.0000
C94	1a	1	-3.40546	-0.35130	-0.78654	0.0000
C95	1a	1	-3.33063	-0.39780	-0.82850	0.0000
C96	1a	1	-3.41524	-0.37884	-0.84646	0.0000
C97	1a	1	-3.77499	-0.33344	-0.82450	0.0000
C98	1a	1	-3.78888	-0.28828	-0.78361	0.0000
N99	1a	1	-3.61957	-0.29900	-0.76603	0.0000
O100	1a	1	-3.96751	-0.24190	-0.76568	0.0000
O101	1a	1	-3.25909	-0.36080	-0.77100	0.0000
C102	1a	1	-3.65749	-0.25490	-0.72602	0.0000
C103	1 a	1	-3.61960	-0.20539	-0.70999	0.0000
C104	1a	1	-3.64085	-0.16366	-0.67192	0.0000
C105	1a	1	-3.70040	-0.17058	-0.64892	0.0000
C106	1a	1	-3.74275	-0.21951	-0.66452	0.0000
C107	1a	1	-3.72294	-0.26124	-0.70270	0.0000
N108	1a	1	-3.70219	-0.12949	-0.61023	0.0000
C109	1a	1	-0.51500	-2.43902	-0.83963	0.0000
C110	1a	1	-0.82771	-2.31324	-0.84187	0.0000
C111	1 a	1	-0.85294	-2.35903	-0.88162	0.0000
C112	1a	1	-1.23351	-2.30915	-1.32237	0.0000

Table S2: TGA and BET data of COFs based imine-imide linkage

COF	$\boldsymbol{T}_{\mathbf{d 5}}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{T}_{\mathbf{d} 10}\left({ }^{\circ} \mathbf{C}\right)$	Char yield $(\mathbf{w t \%} \%)$	Surface area $\left(\mathbf{m}^{\mathbf{2}} \mathbf{g}^{\mathbf{- 1}}\right)$	Average Pore size $(\mathbf{n m})$
Py-DNII-COF	481	522	55.22	183.00	4.10
TFPB-DNII-COF	502	524	38.00	45.00	7.30

Table S3. Thermodynamic parameters of four steps decomposition of COFs ($a=$ Py-DNII-COF, $b=$ TFPB-DNII-COF), where (Ts: setup decomposition temp.; E_{a} : activation energy; $\Delta \mathrm{S}$: entropy; $\Delta \mathrm{H}$: enthalpy, $\Delta \mathrm{G}$: Gibbs free energy)

COF	step	Start $\left({ }^{\circ} \mathbf{C}\right)$	End $\left({ }^{\circ} \mathrm{C}\right)$	Ts $\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{E}_{\mathbf{a}}$ (J.mol $^{-1}$)	$\begin{gathered} \Delta \mathrm{S} \\ \left(\mathrm{~J}^{\mathrm{mol}}{ }^{-1} \cdot \mathrm{~K}^{-1}\right) \end{gathered}$	ΔH $\left(\right.$ J.mol $\left.^{-1}\right)$	$\Delta \mathbf{G}$ $\left(\right.$ J.mol $\left.^{-1}\right)$
a	$1^{\text {st }}$	300	420	352	27386	-291.44	22189.86	204342
	$2^{\text {nd }}$	421	521	515	87191	-206.15	80640.07	243084
	$3^{\text {rd }}$	521	757	635	55274	-245.55	47725.05	270688
b	$1^{\text {st }}$	450	593	546	142841	-131.26	136031.73	243530
	$2^{\text {nd }}$	593	791	661	59570	-237.37	53018.39	240063

COFs	Band Gap (eV)	Metal Co-Catalyst	Sacrificial Element	HER Efficiency	Ref.
Py-DNII-COF	2.37	Pt	AA	$625 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	This work
PTP-COF	2.1	Pt	TEOA	$83.83 \mu \mathrm{~mol} \mathrm{~h}{ }^{-1} \mathrm{~g}^{-1}$	4
$\begin{aligned} & \text { TP-EDDA } \\ & \text { TP-BDDA } \end{aligned}$	$\begin{aligned} & 2.34 \\ & 2.31 \\ & \hline \end{aligned}$	Pt	TEOA	$\begin{aligned} 324 & \pm 10 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1} \\ 30 & \pm 5 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1} \end{aligned}$	5
A(B/N/Y)PY-COF	1.94-1.92	Pt	TEOA	$98 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	6
v-COF-NS1	1.85	Pt	AA	$4.4 \mathrm{mmol} \mathrm{h}^{-1} \mathrm{~g}^{-1}$	7
COF-BBT	2.0	Pt	AA	$48.7 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1}$	8
azine-linked N_{2}-COF	-	molecular cobaloxime	TEOA	$782 \mu \mathrm{~mol} \mathrm{~g}{ }^{-1} \mathrm{~h}^{-1}$	9
TpDTz COF	2.07	NiME cluster	TEOA	$941 \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	10
pCOF10	-	cobaloxime catalyst	TEOA	$163 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	11
TTR-COF	2.71	Au	TEOA	$1720 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	12
$\mathrm{MoS}_{2} / \mathrm{TpPa-1-COF}$	2.14	MoS_{2}	AA	$55.85 \mu \mathrm{~mol} \mathrm{~h}^{-1}$	13
BT-TAPT-COF	2.35	Pt	TEOA	$949 \mu \mathrm{~mol} \mathrm{~g} \mathrm{~g}^{-1} \mathrm{~h}^{-1}$	14
Py-CITP-BT-COF	2.36	Pt	AA	$177.50 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	15
NKCOF-108	1.8	Pt	AA	$120 \mu \mathrm{~mol} \mathrm{~h}^{-1}$	16
BtCOF150	2.5	Pt	TEOA	$750 \pm 25 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1}$	17
$\begin{aligned} & \text { PTPA-COF } \\ & \text { TP-COF } \end{aligned}$	$\begin{aligned} & 2.31 \\ & 2.41 \end{aligned}$	Pt	TEOA	$\begin{gathered} 36 \mu \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~g}^{-1} \\ 29.12 \mathrm{mmol} \mathrm{~h}^{-1} \mathrm{~g}^{-1} \end{gathered}$	18
TAPFy-PhI COF	2.21	Pt	AA	$1763 \mu \mathrm{~mol} \mathrm{~g}^{-1} \mathrm{~h}^{-1}$	19
TpPa-COF-($\left.\mathrm{CH}_{3}\right)_{2}$	2.06	Pt	NaAA	$8033 \mu \mathrm{~mol} \mathrm{~g}{ }^{-1} \mathrm{~h}^{-1}$	20
PyPz-COF	2.05	Pt	AA	$7542 \mu \mathrm{~mol} \mathrm{~g}{ }^{-1} \mathrm{~h}^{-1}$	21

Table S4: Comparison of HER values of Py-DNII-COF with other COF based materials.

References

1 Y. Li, L. Guo, Y. Lv, Z. Zhao, Y. Ma, W. Chen, G. Xing, D. Jiang and L. Chen, Angew. Chemie Int. Ed., 2021, 60, 5363-5369.

2 L. Ascherl, E. W. Evans, M. Hennemann, D. Di Nuzzo, A. G. Hufnagel, M. Beetz, R. H. Friend, T. Clark, T. Bein and F. Auras, Nat. Commun., 2018, 9, 3802.

3 S. P. Black, D. M. Wood, F. B. Schwarz, T. K. Ronson, J. J. Holstein, A. R. Stefankiewicz, C. A. Schalley, J. K. M. Sanders and J. R. Nitschke, Chem. Sci., 2016, 7, 2614-2620.

4 F. Haase, T. Banerjee, G. Savasci, C. Ochsenfeld and B. V Lotsch, Faraday Discuss., 2017, 201, 247-264.

5 P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, A. Thomas and J. Schmidt, J. Am. Chem. Soc., 2018, 140, 1423-1427.

6 L. Stegbauer, S. Zech, G. Savasci, T. Banerjee, F. Podjaski, K. Schwinghammer, C. Ochsenfeld and B. V Lotsch, Adv. Energy Mater., 2018, 8, 1870107.

7 S. Li, R. Ma, S. Xu, T. Zheng, H. Wang, G. Fu, H. Yang, Y. Hou, Z. Liao and B. Wu, ACS Catal., 2023, 13, 1089-1096.

8 W. Huang, Y. Hu, Z. Qin, Y. Ji, X. Zhao, Y. Wu, Q. He, Y. Li, C. Zhang and J. Lu, Natl. Sci. Rev., 2023, 10, nwac 171.

9 V. Artero, M. Chavarot-Kerlidou and M. Fontecave, Angew. Chemie Int. Ed., 2011, 50, 7238-7266.

10 B. P. Biswal, H. A. Vignolo-González, T. Banerjee, L. Grunenberg, G. Savasci, K. Gottschling, J. Nuss, C. Ochsenfeld and B. V Lotsch, J. Am. Chem. Soc., 2019, 141, 1108211092.

11 K. Gottschling, G. Savasci, H. Vignolo-González, S. Schmidt, P. Mauker, T. Banerjee, P. Rovó, C. Ochsenfeld and B. V Lotsch, J. Am. Chem. Soc., 2020, 142, 12146-12156.

12 L. Li, Z. Zhou, L. Li, Z. Zhuang, J. Bi, J. Chen, Y. Yu and J. Yu, ACS Sustain. Chem. Eng., 2019, 7, 18574-18581.

13 M.-Y. Gao, C.-C. Li, H.-L. Tang, X.-J. Sun, H. Dong and F.-M. Zhang, J. Mater. Chem. A, 2019, 7, 20193-20200.

14 G.-B. Wang, S. Li, C.-X. Yan, Q.-Q. Lin, F.-C. Zhu, Y. Geng and Y.-B. Dong, Chem. Coттии., 2020, 56, 12612-12615.

15 W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu and L. Chen, Angew. Chemie, 2020, 132, 17050-17057.

16 Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang and Y. Chen, ACS Catal., 2021, 11, 2098-2107.

17 S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine and H. Suzuki, J. Am. Chem. Soc., 2020, 142, 9752-9762.
H. Liu, D. Wang, Z. Yu, Y. Chen, X. Li, R. Zhang, X. Chen, L. Wu, N. Ding and Y. Wang, Sci. China Mater., 2023, 1-7.

9 G. Zhang, M. Zhao, L. Su, H. Yu, C. Wang, D. Sun and Y. Ding, ACS Appl. Mater. Interfaces, 2023, 15, 20310-20316.
J. Sheng, H. Dong, X. Meng, H. Tang, Y. Yao, D. Liu, L. Bai, F. Zhang, J. Wei and X. Sun, ChemCatChem, 2019, 11, 2313-2319.
F. Wang, L. Yang, X. Wang, Y. Rong, L. Yang, C. Zhang, F. Yan and Q. Wang, Small, 2023, 2207421.

[^0]: * Corresponding author: E-mail: hhchou@mx.nthu.edu.tw (H.H. Chou)
 \# Equal contribution

