Electronic Supplementary Information

Photocatalyzed dimethylacrylamide polymerization in aqueous solution using 4nitrophenylacetylene-modified Cu₂O crystals

Yu-Chien Chen,^a Xing-Fu Huang,^b Huei-Ting Hsu,^b Er-Ting Wu,^b Chi-How Peng^{*a} and Michael H. Huang^{*b}

^a Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan ^bDepartment of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan

Synthesis of Cu₂O crystals

To synthesize cubes and octahedra, 35.68 and 23.60 mL of deionized water were respectively introduced into two sample vials containing 0.348 g of sodium dodecyl sulfate (SDS) surfactant. The surfactant solutions were kept in a 31 °C water bath with vigorous stirring. Next, 2.0 and 0.8 mL of 0.1 M CuCl₂ solution was added into the vials respectively for cubes and octahedra and stirred for 10 min. Next, 0.72 mL and 0.8 mL of 1.0 M NaOH solution were added to the vials for cubes and octahedra, respectively. The color of the solution would change from colorless to light blue with the formation Cu(OH)₂. After stirring for 4 sec, 1.6 mL of 0.1 M NH₂OH·HCl and 5.2 mL of 0.1 M NH₂OH·HCl solutions were injected into the vials respectively and stirred for 10 sec. Then the solutions were aged for 50 and 25 min, respectively.

To synthesize rhombic dodecahedral cuprous oxide, 27.68 mL of deionized water was introduced into the sample vial containing 0.348 g of SDS surfactant. The solution was kept in a 31 °C water bath with vigorous stirring. Then 2 mL of 0.1 M CuCl₂ solution was added into the vial. Next, 0.72 mL of 1.0 M NaOH solution was added. After stirring for 4 sec, 9.6 mL of 0.1 M NH₂OH·HCl solution was introduced and stirred for 20 sec. Finally, the solution was aged for 50 min.

When the reaction time is over, the solutions were centrifuged at 9000 rpm for 10 min using a Universal 320R centrifuge, and washed with 1:1 volume ratio of water and ethanol for 3 times to remove unreacted chemicals and the SDS surfactant, and finally washed with absolute ethanol. After washing, the particles were stored in absolute ethanol.

Fig. S1 Size distribution histograms of the synthesized Cu₂O crystals.

Fig. S2 Illustration of 4-NA modification on Cu₂O crystals.

Fig. S3 XRD patterns of the pristine Cu_2O and 4-NA-modified Cu_2O crystals. A standard pattern of Cu_2O is included.

Fig. S4 SEM images of the 4-NA-functionalized Cu_2O (a) rhombic dodecahedra, (b) octahedra, and (c) cubes.

Fig. S5 UV-vis absorption spectra of DMA, Ph₂ICl, and 4-NA-modified Cu₂O cubes.

Fig. S6 GPC chromatograms of the produced PDMA using different Cu₂O photocatalysts.

Fig. S7 XRD pattern and SEM image of 4-NA-modified Cu₂O rhombic dodecahedra after the polymerization reaction.

Fig. S8 (a) Extent of DMA conversion versus the reaction time using pristine and 4-NA-modified Cu₂O cubes as the photocatalysts with light irradiation from 420 nm mercury lamps. (b) GPC chromatograms of the produced PDMA using 4-NAmodified Cu₂O cubes. (c) Evolution of M_n and D versus monomer conversion using 4-NA-modified Cu₂O cubes from the reaction in (a).

Catalyst	DI	Monomer	Co-initiator	Scavenger	Time	Conversion
	water					
4-NA-Cu ₂ O	1 mL	DMA	Ph ₂ ICl	benzoquinone	1 h	no
cubes 5.3 mg		1 g	15 mg	(e ⁻) 30 mg		reaction
4-NA-Cu ₂ O	1 mL	DMA	Ph ₂ ICl	$Na_2C_2O_4$ (h ⁺)	1 h	55%
cubes 4.8 mg		1 g	15 mg	30 mg		

Table S1 Conditions used for the scavenger experiment

Fig. S9 ¹H-NMR spectrum of the sample for MALDI-TOF mass spectrometry analysis.

Fig. S10 Thermogravimetric analysis and differential scanning calorimetry of the synthesized PDMA.

Fig. S11 Scaled up photopolymerization process using 4-NA-modified Cu₂O cubes as the catalyst.

Fig. S12 UV–vis absorption spectra of the isolated polymer and 4-NA-modified Cu_2O cubes. The polymer is clearly separated from the orange-colored Cu_2O crystals.

Spectrum S1 ¹H-NMR spectrum of the DMA monomer.

Spectrum S2 ¹H-NMR spectrum of the Ph₂ICl co-initiator.

Spectrum S3 ¹H-NMR spectrum of DMA polymerization using Cu_2O octahedra as the photocatalyst.

Spectrum S4 ¹H-NMR spectrum of DMA polymerization using 4-NA-modified Cu_2O octahedra as the photocatalyst.

Spectrum S5 ¹H-NMR spectrum of DMA polymerization using Cu₂O rhombic dodecahedra as the photocatalyst.

Spectrum S6 ¹H-NMR spectrum of DMA polymerization using 4-NA-modified Cu₂O rhombic dodecahedra as the photocatalyst.

Spectrum S7 ¹H-NMR spectrum of DMA polymerization using Cu_2O cubes as the photocatalyst.

Spectrum S8 ¹H-NMR spectrum of DMA polymerization using commercial Cu₂O powder as the photocatalyst.

Spectrum S9 ¹H-NMR spectrum of DMA polymerization in the presence of free 4nitrophenylacetylene.

Spectrum S10 ¹H-NMR spectrum of DMA polymerization in the presence of 4-NA only without Ph_2ICl .