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Figure S1. The XRD pattern of N-TZ-0.1.



Figure S2 SEM images of (a-b)TiO2, (c-d)N-TiO2 and (e-f) Sv-ZIS



Figure S3 SEM images of (a-b) N-TZ-0.01, (c-d)N-TZ-0.05 and (e-f)N-TZ-0.1



Figure S4 Photoelectrochemical water splitting video of heterostructure photocatalyst

In this video, you can see that a large number of bubbles produced by both the 
photocathode and the photoirradiated photoanode, especially the number of hydrogen 
bubbles produced by the photocathode is higher than oxygen bubbles produced by the 
photoanode.

Figure S5. Photocatalytic H2/O2 evolution performance of N-TZ-0.025



Figure S6. LSV curves (a) and photocurrent responses (b) of physically mixed N-TZ-0.025 and N-
TZ-0.025 (a); (d) electrochemical impedance spectroscopy (EIS) of prepared samples; (d) 
photocurrent responses of pure Sv-ZIS.

As shown in Figure S6a and S6b, the photocurrent density of physically mixed N-TZ-
0.025 reached 1.2 mA/cm2 at the potential of 1.23V vs. RHE, which is much smaller 
than N-TZ-0.025. In Figure S6b, it is obvious to find that the physically mixed N-TZ-
0.025 sample has a weaker photocurrent response than the N-TZ-0.025. In Figure S6c, 
the N-TZ-0.025 has a smaller arc radius, which indicates that the separation efficiency 
of electron-hole pairs is higher in the N-TZ-0.025 sample as the interface charge 
transfer is faster. Figure S6c implies the electrochemical measurements of pure Sv-ZIS, 
it can be seen the separation efficiency of electron-hole pairs is low and the interface 
charge transfer resistance is high. When coupled with the TiO2 nanocone, the i-t activity 
and electrochemical properties of Sv-ZIS have noticeable improvements. Figure S6d 
shows the i-t activity of pure Sv-ZIS and the photocurrent density was ~140 μA/cm2 
under the same conditions as its counterpart samples, indicating the carrier 
recombination is severe.



Figure S7 UV-vis absorption spectra of Sv-ZIS 

Figure S8 Measured IPCE in the visible-light range



Photoanode electrolyte  Photocurrent density
(at 1.23 V vs. RHE)

IPCE Ref.

ZnIn2S4/TiO2 0.35M Na2SO3
and 0.24M Na2S

1.2 mA/cm-2 21% at 380 nm [1]

TiO2/N-CDs 1.0 M NaOH 3.09 mA/cm-2 65% at 390 nm [2]
TiO2-VTi/Fe2O3 1.0 M KOH 1.45 mA/cm-2 29.8% at 340 nm [3]
TiO2@Au25/TiO2 0.5M Na2SO4 1.35 mA/cm-2 45.2% at 318 nm [4]
Au/N-TiO2 1.0 M KOH 2.8 mA/cm-2 60.7% at 300 nm [5]
Y2O3/TiO2 1.0 M KOH  0.609 mA/cm-2 22% at 350 nm [6]
PCN/Cu-TiO2 0.2M Na2SO4 1.89 mA/cm-2 31.2% at 415 nm [7]
TiO2/BiVO4 0.2M Na2SO4 2.36mA/cm-2 38% at 350 nm [8]
SrTiO3/TiO2/Au 1.0 M NaOH 2.11 mA/cm-2 59% at 340 nm [9]
CuInS2/TiO2 0.5M Na2SO4 1.11 mA/cm-2 57.7% at 400 nm [10]
Sv-ZnIn2S4/N-TiO2 0.5M Na2SO4 4.9 mA/cm-2 57.9% at 350 nm This work

Table S1 The representative IPCE results of TiO2-based photocatalysts.
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