Insight into piezoelectricity modulation mechanism of ZnO doped

with Y ions

Zihan Wang¹, Yue Sun¹, Shenglong Wang¹, Da Xiong¹, Guo Tian¹, Longchao Huang¹,

Boling Lan¹, Long Jin¹, Weiqing Yang ^{1,2}, Weili Deng^{1, *}

¹Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

²Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, P. R. China

*E-mail: weili1812@swjtu.edu.cn

This file includes:

Figure S1. Fabrication schematic diagram of ZnO NRs film devices.

Figure S2. Surface SEM images of ZnO NRs with different doping concentrations.

Figure S3. Cross-sectional SEM images of ZnO NRs with different doping concentrations.

Figure S4. Length and diameter statistics of ZnO NRs with different doping concentrations.

Figure S5. Schematic diagram of the Mott-Schottky test method by three electrodes.

Figure S6. Mott-Schottky plots of ZnO with different doping concentrations.

Figure S7. Schematic diagram of a piezoelectric device based on ZnO NRs.

Figure S8. Trend diagram of ZnO (green) and Y- ZnO (blue) under forces ranging from 1to 9 N.

Figure S9. Current output of Y-ZnO with different doping concentrations under the forces ranging from 1 to 9 N.

Figure S10. Voltage output of Y-ZnO with different doping concentrations under the forces ranging from 1 to 9 N.

Figure S11. Piezoelectric outputs with error bars and confidence bands of ZnO with different doping concentrations under the force of 5 N.

Figure S1. Fabrication schematic diagram of ZnO NRs film devices.

Figure S2. Surface SEM images of ZnO NRs with different doping concentrations. Scale bars, 300 nm.

Figure S3. Cross-sectional SEM images of ZnO NRs with different doping concentrations. Scar bars, $1 \mu m$.

Figure S4. Length and diameter statistics of ZnO NRs with different doping concentrations.

Figure S5. Schematic diagram of the Mott-Schottky test method by three electrodes.

Figure S6. Mott-Schottky plots of ZnO with different doping concentrations.

Figure S7. Schematic diagram of a piezoelectric device based on ZnO NRs.

Figure S8. Trend diagram of ZnO (green) and Y- ZnO (blue) under forces ranging from 1to 9 N. Force area, 9 cm².

Figure S9. Current output of Y-ZnO with different doping concentrations under the forces ranging from 1 to 9 N. Force area, 9 cm².

Figure S10. Voltage output of Y-ZnO with different doping concentrations under the forces ranging from 1 to 9 N. Force area, 9 cm².

Figure S11. Piezoelectric outputs with error bars and confidence bands of ZnO with different doping concentrations under the force of 5 N. Force area, 9 cm².