SupportingInformation

Laser-Assisted Fabrication of a 3D Cross-linked V₂CT_x/rGO

Microelectrodes for High-Rate Aqueous Zinc-Ion Microbatteries

Jiao Wu, ^a Long Liu, ^a Cai-Yun Ren, ^b Yong-Chao Zhang, ^a Jian Gao, *^a and Xiao-Dong Zhu *^a

Figure S1. (a) SEM image of the MAX Phase of V₂AlC. (b) TEM image of the V₂CT_x flakes. (c) XRD patterns of the MAX phase of V₂AlC and the V₂CT_x flakes. (d) TEM image of the GO flakes. (e) Digital photographs of the V₂CT_x@GO hybrid film and its flexible display. (f) Digital photograph of the interfinger patterned electrode.

Figure S2. The schematic procedure of electrode transfer process.

Figure S3. (a) SEM image of the 2D $V_2CT_x@GO-60\%$ hybrid film cross section. (b) SEM image of 3D $V_2CT_x@rGO-60\%$ hybrid foam cross section.

Figure S4. The magnification pattern of $V_2CT_x@rGO-70\%$ interfinger microelectrode

Figure S5. The planar SEM image of the 3D hybrid foam and corresponding EDS elemental mapping

Figure S6. The electronic conductivity of the $V_2CT_x@GO-50\%$, $V_2CT_x@rGO-50\%$ and V_2CT_x

Figure S7. (a-b) Planar SEM images of $V_2CT_x@GO-50\%$ film and $V_2CT_x@rGO-50\%$ foam. (c-d) Planar AFM images of $V_2CT_x@GO-50\%$ film and $V_2CT_x@rGO-50\%$ foam.

Figure S8. CV profile of the initial electrochemical oxidation about $3D VO_x-V_2CT_x@rGO$.

Figure <mark>S9.</mark> The performance comparison bar charts for specific capacity

Figure S10. The electrochemical impedance spectroscopy (EIS) measured with 3D $V_2CT_x@rGO-50\%/40\%/30\%$ microelectrodes

Figure S11. Shorter cycle performance and the corresponding Coulombic efficiency at 1 A g^{-1} for up to 25 cycles.

Cathode materials	Power density (µW cm ⁻²)	Energy density (µWh cm ⁻²)	Ref
V ₂ O ₅ @CNTs	193	112.5	[39]
PANI	99	31	[42]
PANI	990	250	[44]
MnO _x /polypyrrole	178.8	50	[41]
VO ₂ (B)-MWCNTs	88.61	124.2	[8]
MnO ₂ @VG	67.16	201.5	[40]
MnO ₂ /CNT	-	154.6	[43]
KMO/rGO	-	244	[45]
(This work)	615.8	353.54	

Table S1. The performance comparision with other microbatteries

Figure **S12.** zinc-ion microbattery lights an LED.