Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information

$$
\alpha h v = A (h v - Eg)^n \tag{1}
$$

$$
E_{FE} = h\nu - E_{cutoff} \tag{2}
$$

$$
E_{VB} = E_{FE} + E_{onset} - E_e
$$
\n⁽³⁾

$$
E_{CB} = E_{VB} - E_g \tag{4}
$$

where α, ν and Eg are the absorption coefficient, incident light frequency and band gap, respectively, and h and A are constants. Typically, the value of n is 2 for indirect bandgap semiconductors and $1/2$ for direct bandgap semiconductors. Here, $n = 2$. hv is the radiant energy (hv=21.22eV), Ee is the energy of free electrons on the hydrogen scale (Ee = 4.5 eV).

$$
E_{RHE} = E_{Ag/AgCl} + 0.0591PH + 0.1976 V \tag{5}
$$

$$
ABPE = (J_{light} - J_{dark}) \times (\frac{1.23 - V_{RHE}}{P_{light}})
$$
\n
$$
(6)
$$

Here, J_{light} and J_{dark} is the photocurrent density under light and dark conditions. V_{RHE} represents the relationship between applied potential and RHE, and *Plight* is the intensity of incident light (100 mW/cm², AM 1.5 G).

$$
IPECE = \frac{1240J}{\lambda Plight} \tag{7}
$$

$$
2(V - V_{fb} - \frac{K_B T}{e})
$$

$$
1/c^2 = (8)
$$

$$
N_d = \frac{2}{\varepsilon \varepsilon_0 e} \left[\frac{d(\frac{1}{2})}{d_V} \right]^{-1}
$$
\n(9)

$$
J_{H2O} = J_{abs} \times \eta_{bulk} \times \eta_{surface}
$$
 (10)

$$
J_{Na2SOs} = J_{abs} \times \eta_{bulk} \tag{11}
$$

$$
\eta_{bulk} = J_{Na^2SO}/J_{abs} \tag{12}
$$

$$
\eta_{\text{surface}} = J_{H2O}/J_{Na2SOs} \tag{13}
$$

 J_{H2O} stands for photocurrent density, and J_{abs} refers to photon absorption represented by current density (100 % photocurrent of APCE is assumed).*c* represents the space charge capacitance, K_B means Boltzmann constant (1.38 \times 10⁻²³ J/K), *T* indicates Kelvin temperature, ε and ε_0 are the relative permittivity and the permittivity of vacuum of CdS, *e* represents elementary charge and *A* is coated electrode area, the bias voltage applied to the electrodes is expressed by V.

$$
FE_{O_2} = \frac{4nF}{I \times t} \times 100\%
$$
\n(14)

Where n is the actual number of moles of the product (mol), F is Faraday's constant (96485.34C/mol), I is the photocurrent produced (A) and t is the reaction time (s).

Table S1 Flat band potential (V_{fb}) and donor density (N_d) of electrodes deduced from Mott-Schottky

Condition	Light		Light+ $\triangle T$	
Sample	V_{tb} (V vs RHE)	N_d (cm ⁻³)	V_{tb} (V vs RHE)	N_d (cm ⁻³)
CdS	-0.21	1.25×10^{19}	-0.20	2.02×10^{19}
CdS/In_2S_3-H	-0.36	2.12×10^{19}	-0.37	2.31×10^{19}
CdS/In_2S_3-HC	-0.41	2.26×10^{19}	-0.43	2.49×10^{19}

Fig. S1 Diagram of the crystal transition mechanism

Fig. S2 The pore distribution for the CdS, CdS/In₂S₃-T and CdS/In₂S₃-TC

Fig. S3 The LSV curves of different samples under photoelectrocatalytic and pyro-photoelectrocatalytic conditions

Fig. S4 The ABPE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S5 The IPCE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S6 Mechanism diagram of CdS/In₂S₃ heterojunctions

Fig. S7 Diagram of pyroelectric mechanism during temperature change

Fig. S8 Amplitude butterfly loop (a, c) and phase lag loop (b, d) of CdS/In₂S₃-T and $CdS/In₂S₃-TC$ films

Fig. S9 SEM patterns of CdS/In₂S₃-T(a) and CdS/In₂S₃-TC(b) after the stability test

Fig. S10 The oxygen measurement data and Faraday efficiency of CdS/In₂S₃-T and CdS/In_2S_3-TC films

Supporting information

$$
\alpha h v = A (h v - Eg)^n \tag{1}
$$

$$
E_{FE} = hv - E_{cutoff} \tag{2}
$$

$$
E_{VB} = E_{FE} + E_{onset} - E_e
$$
\n⁽³⁾

$$
E_{CB} = E_{VB} - E_g \tag{4}
$$

where α, ν and Eg are the absorption coefficient, incident light frequency and band gap, respectively, and h and A are constants. Typically, the value of n is 2 for indirect bandgap semiconductors and $1/2$ for direct bandgap semiconductors. Here, $n = 2$. hv is the radiant energy (hv=21.22eV), Ee is the energy of free electrons on the hydrogen scale (Ee = 4.5 eV).

$$
E_{RHE} = E_{Ag/AgCl} + 0.0591PH + 0.1976 V \tag{5}
$$

$$
ABPE = (J_{light} - J_{dark}) \times (\frac{1.23 - V_{RHE}}{P_{light}})
$$
\n
$$
(6)
$$

Here, J_{light} and J_{dark} is the photocurrent density under light and dark conditions. V_{RHE} represents the relationship between applied potential and RHE, and *Plight* is the intensity of incident light (100 mW/cm², AM 1.5 G).

$$
IPECE = \frac{1240J}{\lambda Plight} \tag{7}
$$

$$
2(V - V_{fb} - \frac{K_B T}{e})
$$

$$
1/c^2 = (8)
$$

$$
N_d = \frac{2}{\varepsilon \varepsilon_0 e} \left[\frac{d(\frac{1}{2})}{d_V} \right]^{-1}
$$
\n(9)

$$
J_{H2O} = J_{abs} \times \eta_{bulk} \times \eta_{surface}
$$
 (10)

$$
J_{Na2SOs} = J_{abs} \times \eta_{bulk} \tag{11}
$$

$$
\eta_{bulk} = J_{Na^2SO} / J_{abs} \tag{12}
$$

$$
\eta_{\text{surface}} = J_{H2O}/J_{Na2SOs} \tag{13}
$$

J^H2^O stands for photocurrent density, and *Jabs* refers to photon absorption represented by current density (100 % photocurrent of APCE is assumed).*c* represents the space charge capacitance, K_B means Boltzmann constant (1.38 \times 10⁻²³ J/K), *T* indicates Kelvin temperature, ε and ε_0 are the relative permittivity and the permittivity of vacuum of CdS, *e* represents elementary charge and *A* is coated electrode area, the

bias voltage applied to the electrodes is expressed by V.

$$
FE_{O_2} = \frac{4nF}{I \times t} \times 100\%
$$
\n(14)

Where n is the actual number of moles of the product (mol), F is Faraday's constant (96485.34C/mol), I is the photocurrent produced (A) and t is the reaction time (s).

Table S1 Flat band potential (V_{fb}) and donor density (N_d) of electrodes deduced from Mott-Schottky

Condition	Light		Light+ \triangle T	
Sample	V_{tb} (V vs RHE)	N_d (cm ⁻³)	V_{tb} (V vs RHE)	N_d (cm ⁻³)
CdS	-0.21	1.25×10^{19}	-0.20	2.02×10^{19}
CdS/In_2S_3-H	-0.36	2.12×10^{19}	-0.37	2.31×10^{19}
CdS/In_2S_3-HC	-0.41	2.26×10^{19}	-0.43	2.49×10^{19}

Fig. S1 Diagram of the crystal transition mechanism

Fig. S2 The pore distribution for the CdS, CdS/In₂S₃-T and CdS/In₂S₃-TC

Fig. S3 The LSV curves of different samples under photoelectrocatalytic and pyro-photoelectrocatalytic conditions

Fig. S4 The ABPE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S5 The IPCE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S6 Mechanism diagram of CdS/In₂S₃ heterojunctions

Fig. S7 Diagram of pyroelectric mechanism during temperature change

Fig. S8 Amplitude butterfly loop (a, c) and phase lag loop (b, d) of CdS/In₂S₃-T and CdS/In_2S_3-TC films

Fig. S9 SEM patterns of CdS/In₂S₃-T(a) and CdS/In₂S₃-TC(b) after the stability test

Fig. S10 The oxygen measurement data and Faraday efficiency of CdS/In₂S₃-T and CdS/In_2S_3-TC films