Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information

$$\alpha h \nu = A \left(h \nu - E g \right)^n \tag{1}$$

$$E_{FE} = h\nu - E_{cutoff} \tag{2}$$

$$E_{VB} = E_{FE} + E_{onset} - E_e \tag{3}$$

$$E_{CB} = E_{VB} - E_g \tag{4}$$

where α , v and Eg are the absorption coefficient, incident light frequency and band gap, respectively, and h and A are constants. Typically, the value of n is 2 for indirect bandgap semiconductors and 1/2 for direct bandgap semiconductors. Here, n = 2. hv is the radiant energy (hv=21.22eV), Ee is the energy of free electrons on the hydrogen scale (Ee = 4.5 eV).

$$E_{RHE} = E_{Ag/AgCl} + 0.0591PH + 0.1976V$$
(5)

$$ABPE = (J_{light} - J_{dark}) \times (\frac{1.23 - V_{RHE}}{P_{light}})$$
(6)

Here, J_{light} and J_{dark} is the photocurrent density under light and dark conditions. V_{RHE} represents the relationship between applied potential and RHE, and P_{light} is the intensity of incident light (100 mW/cm², AM 1.5 G).

$$IPCE = \frac{1240J}{\lambda P light}$$
(7)

$$2(V - V_{fb} - \frac{K_B T}{e}) \Big/_{\varepsilon \varepsilon_0 e A^2 N_d}$$
(8)

$$N_d = \frac{2}{\varepsilon \varepsilon_0 e} \left[\frac{d(\frac{1}{c^2})}{d_V} \right]^{-1}$$
(9)

$$J_{H^2O} = J_{abs} \times \eta_{bulk} \times \eta_{surface} \tag{10}$$

$$J_{Na^2SO^3} = J_{abs} \times \eta_{bulk} \tag{11}$$

$$\eta_{bulk} = J_{Na^2SO^3} / J_{abs} \tag{12}$$

$$\eta_{surface} = J_{H_2O} / J_{Na_2SO_3} \tag{13}$$

 $J_{H^{2}O}$ stands for photocurrent density, and J_{abs} refers to photon absorption represented by current density (100 % photocurrent of APCE is assumed).*c* represents the space charge capacitance, K_B means Boltzmann constant (1.38 × 10⁻²³ J/K), *T* indicates Kelvin temperature, ε and ε_0 are the relative permittivity and the permittivity of vacuum of CdS, *e* represents elementary charge and *A* is coated electrode area, the bias voltage applied to the electrodes is expressed by V.

$$FE_{O_2} = \frac{4nF}{I \times t} \times 100\%$$
(14)

Where n is the actual number of moles of the product (mol), F is Faraday's constant (96485.34C/mol), I is the photocurrent produced (A) and t is the reaction time (s).

Table S1 Flat band potential (V_{fb}) and donor density (N_d) of electrodes deduced from Mott-Schottky

Conditio	Light		Light+∆T			
Sample	V _{fb} (V vs RHE)	N_d (cm ⁻³)	V _{fb} (V vs RHE)	N_d (cm ⁻³)		
CdS	-0.21	1.25×10^{19}	-0.20	2.02×10 ¹⁹		
CdS/In ₂ S ₃ -H	-0.36	2.12×10^{19}	-0.37	2.31×10 ¹⁹		
CdS/In ₂ S ₃ -HC	-0.41	2.26×10^{19}	-0.43	2.49×10 ¹⁹		

Fig. S1 Diagram of the crystal transition mechanism

Fig. S2 The pore distribution for the CdS, CdS/In₂S₃-T and CdS/In₂S₃-TC

Fig. S3 The LSV curves of different samples under photoelectrocatalytic and pyro-photoelectrocatalytic conditions

Fig. S4 The ABPE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S5 The IPCE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S6 Mechanism diagram of CdS/In₂S₃ heterojunctions

Fig. S7 Diagram of pyroelectric mechanism during temperature change

Fig. S8 Amplitude butterfly loop (a, c) and phase lag loop (b, d) of CdS/In₂S₃-T and CdS/In₂S₃-TC films

Fig. S9 SEM patterns of CdS/In₂S₃-T(a) and CdS/In₂S₃-TC(b) after the stability test

Fig. S10 The oxygen measurement data and Faraday efficiency of CdS/In $_2$ S $_3$ -T and CdS/In $_2$ S $_3$ -TC films

Supporting information

$$\alpha h \nu = A \left(h \nu - E g \right)^n \tag{1}$$

$$E_{FE} = h\nu - E_{cutoff} \tag{2}$$

$$E_{VB} = E_{FE} + E_{onset} - E_e \tag{3}$$

$$E_{CB} = E_{VB} - E_g \tag{4}$$

where α , v and Eg are the absorption coefficient, incident light frequency and band gap, respectively, and h and A are constants. Typically, the value of n is 2 for indirect bandgap semiconductors and 1/2 for direct bandgap semiconductors. Here, n = 2. hv is the radiant energy (hv=21.22eV), Ee is the energy of free electrons on the hydrogen scale (Ee = 4.5 eV).

$$E_{RHE} = E_{Ag/AgCl} + 0.0591PH + 0.1976V$$
(5)

$$ABPE = (J_{light} - J_{dark}) \times (\frac{1.23 - V_{RHE}}{P_{light}})$$
(6)

Here, J_{light} and J_{dark} is the photocurrent density under light and dark conditions. V_{RHE} represents the relationship between applied potential and RHE, and P_{light} is the intensity of incident light (100 mW/cm², AM 1.5 G).

$$IPCE = \frac{1240J}{\lambda P light}$$
(7)

$$2(V - V_{fb} - \frac{K_B T}{e}) / \varepsilon \varepsilon_0 e A^2 N_d$$
(8)

$$N_d = \frac{2}{\varepsilon \varepsilon_0 e} \left[\frac{d(\frac{1}{c^2})}{d_V} \right]^{-1}$$
(9)

$$J_{H^2O} = J_{abs} \times \eta_{bulk} \times \eta_{surface} \tag{10}$$

$$J_{Na^2SO^3} = J_{abs} \times \eta_{bulk} \tag{11}$$

$$\eta_{bulk} = J_{Na^2SO^3} / J_{abs} \tag{12}$$

$$\eta_{surface} = J_{H_2O} / J_{Na2SO_3} \tag{13}$$

 $J_{H_{2}O}$ stands for photocurrent density, and J_{abs} refers to photon absorption represented by current density (100 % photocurrent of APCE is assumed).*c* represents the space charge capacitance, K_B means Boltzmann constant (1.38 × 10⁻²³ J/K), *T* indicates Kelvin temperature, ε and ε_0 are the relative permittivity and the permittivity of vacuum of CdS, *e* represents elementary charge and *A* is coated electrode area, the bias voltage applied to the electrodes is expressed by V.

$$FE_{O_2} = \frac{4nF}{I \times t} \times 100\%$$
(14)

Where n is the actual number of moles of the product (mol), F is Faraday's constant (96485.34C/mol), I is the photocurrent produced (A) and t is the reaction time (s).

Table S1 Flat band potential (V_{fb}) and donor density (N_d) of electrodes deduced from Mott-Schottky

J						
Condition	Light		$Light+ \triangle T$			
Sample	V _{fb} (V vs RHE)	N_d (cm ⁻³)	V _{fb} (V vs RHE)	N_d (cm ⁻³)		
CdS	-0.21	1.25×10^{19}	-0.20	2.02×10^{19}		
CdS/In ₂ S ₃ -H	-0.36	2.12×10^{19}	-0.37	2.31×10 ¹⁹		
CdS/In ₂ S ₃ -HC	-0.41	2.26×10^{19}	-0.43	2.49×10 ¹⁹		

Fig. S1 Diagram of the crystal transition mechanism

Fig. S2 The pore distribution for the CdS, CdS/In $_2S_3$ -T and CdS/In $_2S_3$ -TC

Fig. S3 The LSV curves of different samples under photoelectrocatalytic and pyro-photoelectrocatalytic conditions

Fig. S4 The ABPE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S5 The IPCE curves of different samples under photoelectrocatalysis and pyro-photoelectrocatalysis conditions

Fig. S6 Mechanism diagram of CdS/In_2S_3 heterojunctions

Fig. S7 Diagram of pyroelectric mechanism during temperature change

Fig. S8 Amplitude butterfly loop (a, c) and phase lag loop (b, d) of CdS/In₂S₃-T and CdS/In₂S₃-TC films

Fig. S9 SEM patterns of CdS/In₂S₃-T(a) and CdS/In₂S₃-TC(b) after the stability test

Fig. S10 The oxygen measurement data and Faraday efficiency of CdS/In $_2$ S $_3$ -T and CdS/In $_2$ S $_3$ -TC films