SUPPORTING INFORMATION

Influence of Ge Substitution on the Structure and Optical Properties of $Cu_2ZnSn_{1-x}Ge_xS_4$ Photovoltaic Materials

Amit Bhattacharya¹, Vidyanshu Mishra¹, Victor V. Terskikh², Arthur Mar^{1*} and Vladimir K. Michaelis^{1*}

1. Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

2. Metrology, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6

NMR Parameters

NMR signals are characterized by two types of tensor quantities:

(a) Chemical shift anisotropy (CSA):

- The position is defined by the *isotropic chemical shift*, $\delta_{iso} = \frac{1}{3}(\delta_{11}+\delta_{22}+\delta_{33})$, where $\delta_{l1} \ge \delta_{22} \ge \delta_{33}$.
- The breadth is defined by the *span*, $\Omega = \delta_{11} \delta_{33}$.
- The shape is defined by the *skew*, $\kappa = 3(\delta_{22} \delta_{iso})/\Omega$.

(b) Quadrupolar interactions for nuclei with $I > \frac{1}{2}$:

- The strength of the interaction between a nucleus and the surrounding electric field gradient (EFG) is defined by the *nuclear quadrupole coupling constant*, $C_Q = eQV_{zz}/h$, where e is the elementary charge, Q is the quadrupolar moment of the nucleus, V_{zz} is the largest principal component of the EFG, and h is Planck's constant.
- The symmetry of the EFG tensor is defined by the asymmetry parameter, $\eta = (V_{xx} V_{yy})/V_{zz}$, where $|V_{xx}| \le |V_{yy}| \le |V_{zz}|$.

	⁶⁵ Cu	⁶⁷ Zn	¹¹⁹ Sn	⁷³ Ge
conditions	non-spinning	non-spinning	non-spinning	non-spinning
$B_0(\mathrm{T})$	7.05, 11.75, 21.1	21.1	11.75	21.1
pulse sequence	wideline quadrupolar echo ^a	wideline quadrupolar echo	Hahn echo	Bloch
$\pi/2$ pulse (µs)	1	3	4	4
$\gamma B_1/2\pi$ (kHz)	125	28	62.5	12.5
τ (μs)	50	50	30	_
recycle delay (s)	2	5	50–100	5
rotor diameter (mm)	4	4	4	7
co-added transients	1024-8048	15360	1024–2048	8192
	⁶³ Cu	⁶⁷ Zn	¹¹⁹ Sn	⁷³ Ge
conditions	⁶³ Cu MAS ($\omega_r/2\pi = 62.5$ kHz)	⁶⁷ Zn MAS ($\omega_r/2\pi = 10$ kHz)	¹¹⁹ Sn MAS ($\omega_r/2\pi = 14$ kHz)	⁷³ Ge MAS ($\omega_r/2\pi = 5$ kHz)
conditions B_0 (T)	^{63}Cu MAS ($\omega_r/2\pi = 62.5$ kHz) 21.1	$\frac{67}{\text{Zn}}$ MAS ($\omega_r/2\pi = 10$ kHz) 21.1	$\frac{119 \text{Sn}}{\text{MAS}} (\omega_r/2\pi = 14 \text{ kHz})$ 7.05	⁷³ Ge MAS ($\omega_r/2\pi = 5$ kHz) 21.1
conditions <i>B</i> ₀ (T) pulse sequence	⁶³ Cu MAS ($ω_r/2π = 62.5$ kHz) 21.1 wideline quadrupolar echo	$\frac{67}{\text{Zn}}$ MAS ($\omega_r/2\pi = 10$ kHz) 21.1 Bloch	¹¹⁹ Sn MAS ($\omega_r/2\pi = 14$ kHz) 7.05 Hahn echo	⁷³ Ge MAS ($\omega_r/2\pi = 5$ kHz) 21.1 Bloch
conditions B_0 (T) pulse sequence $\pi/2$ pulse (µs)	63 Cu MAS (ω _r /2π = 62.5 kHz) 21.1 wideline quadrupolar echo 1	$6^{7}Zn$ MAS ($\omega_{r}/2\pi = 10$ kHz) 21.1 Bloch 3	$\frac{119}{\text{Sn}}$ MAS ($\omega_r/2\pi = 14$ kHz) 7.05 Hahn echo 4	⁷³ Ge MAS ($\omega_r/2\pi = 5$ kHz) 21.1 Bloch
conditions B_0 (T) pulse sequence $\pi/2$ pulse (μ s) $\gamma B_1/2\pi$ (kHz)	63 Cu MAS ($\omega_r/2\pi = 62.5$ kHz) 21.1 wideline quadrupolar echo 1 125	$6^{7}Zn$ MAS ($\omega_{r}/2\pi = 10$ kHz) 21.1 Bloch 3 27.8	119Sn MAS ($\omega_r/2\pi = 14$ kHz) 7.05 Hahn echo 4 62.5	7^{3} Ge MAS (ω _r /2π = 5 kHz) 21.1 Bloch 4 12.5 12.5
conditions B_0 (T) pulse sequence $\pi/2$ pulse (μ s) $\gamma B_1/2\pi$ (kHz) τ (μ s)	63 Cu MAS (ω _r /2π = 62.5 kHz) 21.1 wideline quadrupolar echo 1 125 15	$6^{7}Zn$ MAS ($\omega_r/2\pi = 10$ kHz) 21.1 Bloch 3 27.8	$\frac{119}{\text{Sn}}$ MAS ($\omega_r/2\pi = 14$ kHz) 7.05 Hahn echo 4 62.5 67.4	73 Ge MAS ($\omega_r/2\pi = 5$ kHz) 21.1 Bloch 4 12.5 —
conditions B_0 (T) pulse sequence $\pi/2$ pulse (μ s) $\gamma B_1/2\pi$ (kHz) τ (μ s) recycle delay (s)	63 Cu MAS (ω _r /2π = 62.5 kHz) 21.1 wideline quadrupolar echo 1 125 15 2	$6^{7}Zn$ MAS ($\omega_r/2\pi = 10$ kHz) 21.1 Bloch 3 27.8 2-5	$\frac{119 \text{Sn}}{\text{MAS}} (\omega_r / 2\pi = 14 \text{ kHz})$ 7.05 Hahn echo 4 62.5 67.4 50–150	7^{3} Ge MAS (ω _r /2π = 5 kHz) 21.1 Bloch 4 12.5 2-5
conditions B_0 (T) pulse sequence $\pi/2$ pulse (μ s) $\gamma B_1/2\pi$ (kHz) τ (μ s) recycle delay (s) rotor diameter (mm)	63 Cu MAS (ω _r /2π = 62.5 kHz) 21.1 wideline quadrupolar echo 1 125 15 2 1.3	$6^{7}Zn$ MAS ($\omega_r/2\pi = 10$ kHz) 21.1 Bloch 3 27.8 2-5 4	$\frac{119 \text{Sn}}{\text{MAS}} (\omega_r / 2\pi = 14)$ kHz) 7.05 Hahn echo 4 62.5 67.4 50–150 4	7^{3} Ge MAS (ω _r /2π = 5 kHz) 21.1 Bloch 4 12.5 2-5 7

Table S1. Experimental Conditions for Acquisition of NMR Spectra of Cu₂ZnSn_{1-x}Ge_xS₄

^{*a*} Wide-line quadrupolar echo implies a ($\theta - \tau - \theta - \tau$ -acquire) experiment. θ refers to 90° solid pulse with the pulse lengths p1 = p2. See Bodart, P.R., Amoureux, J.P., Dumazy, Y. and Lefort, R. **2000**, Molecular Physics, 98 (19), 1545 and Dumazy, Y., Amoureux, J.P. and Fernandez, C., 2010, Molecular Physics, 90(6), 959

^bHahn echo implies a ($\theta - \tau - 2\theta - \tau$ -acquire) experiment. θ refers to 90° nutation angle and the pulse length, p2 = 2×p1; p1 is the 90° pulse.

Nucleus	Larmor frequency (MHz) at 7.05 T	Larmor frequency (MHz) at 11.75 T	Larmor frequency (MHz) at 21.1 T
^{63/65} Cu	85.25 (⁶⁵ Cu)	142.05 (⁶⁵ Cu)	238.67(⁶³ Cu) / 255.67 (⁶⁵ Cu)
⁶⁷ Zn	-	-	56.32
⁷³ Ge	-	-	31.39
¹¹⁹ Sn	111.90	149.21	-

Table S2. Nuclear Larmor frequencies of ^{63/65}Cu, ⁶⁷Zn, ⁷³Ge and ¹¹⁹Sn nuclei at the external magnetic field used.

x	composition	Cu	Zn	Sn	Ge	S
0	Cu_2ZnSnS_4	26	11	13	0	51
	(nominal)	25	12	13	0	50
0.05	$Cu_2ZnSn_{0.95}Ge_{0.05}S_4$	23	11	13	1	52
	(nominal)	25	12	12	1	50
0.20	$Cu_2ZnSn_{0.80}Ge_{0.20}S_4$	24	10	11	2	53
	(nominal)	25	12	10	3	50
0.40	$Cu_2ZnSn_{0.60}Ge_{0.40}S_4$	24	12	8	5	51
	(nominal)	25	12	8	5	50
0.60	$Cu_2ZnSn_{0.40}Ge_{0.60}S_4$	25	13	5	7	50
	(nominal)	25	12	5	8	50
0.80	$Cu_2ZnSn_{0.20}Ge_{0.80}S_4$	24	12	3	10	51
	(nominal)	25	12	3	10	50
1.00	Cu ₂ ZnGeS ₄	25	12	0	12	51
	(nominal)	25	12	0	13	50

Table S3. EDX Analyses (mol %) for Cu₂ZnSn_{1-x}Ge_xS₄ Samples ^a

^{*a*} Experimental compositions are shown on first line and expected compositions on second line. Estimated uncertainties are 2% for each element.

Table S4. Cell Parameters	for Cu ₂ ZnSn _{1-x} Ge _x S ₄ . ^a
---------------------------	---

x	compound	<i>a</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	η (<i>c</i> /2 <i>a</i> ratio)
0	Cu_2ZnSnS_4	5.4356(3)	10.8354(1)	320.14(2)	0.997
0.05	$Cu_2ZnSn_{0.95}Ge_{0.05}S_4$	5.4294(1)	10.8239(1)	319.08(1)	0.997
0.20	$Cu_2ZnSn_{0.80}Ge_{0.20}S_4$	5.4167(1)	10.7758(1)	316.17(1)	0.995
0.40	$Cu_2ZnSn_{0.60}Ge_{0.40}S_4$	5.3987(2)	10.7128(5)	312.23(2)	0.992
0.60	$Cu_2ZnSn_{0.40}Ge_{0.60}S_4$	5.3754(1)	10.6414(3)	307.48(1)	0.989
0.80	$Cu_2ZnSn_{0.20}Ge_{0.80}S_4$	5.3641(1)	10.5855(1)	304.58(1)	0.987
1.00	Cu ₂ ZnGeS ₄	5.3449(1)	10.5137(1)	300.35(1)	0.983

^{*a*} Refined from powder XRD patterns. Standard uncertainties are shown in parentheses.

atom	Wyckoff position	x	у	Ζ
Cu_2ZnSnS_4 ($I\overline{4}$)				
Cu1	2 <i>c</i>	0	1/2	1/4
Cu2	2 <i>a</i>	0	0	0
Zn	2 <i>d</i>	0	1/2	3/4
Sn	2 <i>b</i>	0	0	1/2
S	8g	0.2469(4)	0.2524(4)	0.1274(3)
Cu_2ZnGeS_4 ($I\overline{4}$)				
Cu1	2 <i>c</i>	0	1/2	1/4
Cu2	2 <i>a</i>	0	0	0
Zn	2 <i>d</i>	0	1/2	3/4
Ge	2 <i>b</i>	0	0	1/2
S	8 <i>g</i>	0.2601(14)	0.244(4)	0.1217(1)

Table S5. Atomic Coordinates for Cu₂ZnSnS₄ and Cu₂ZnGeS₄.

Table S6. Calculations of the tetragonal angular variance (σ^2) for Cu₂ZnSnS₄ and Cu₂ZnGeS₄ ^{*a*}

^a $\sigma^2 = \frac{1}{5} \sum_{i=1}^{6} (\theta_i - 109.47^\circ)^2$; where θ_i pertains to \angle S-Cu-S angles.

			Cu ₂ ZnSnS ₄		
Wyckoff position	Angle A (°)	Angle B (°)	C [$(\theta_i - 109.47^\circ)^2$ for A]	D [$(\theta_i - 109.47^\circ)^2$ for B]	σ^2 [(4×C+2×D)/5] in (° ²)
2c (Cu1)	109.2 (×4)	110.1 (×2)	0.07	0.39	0.2
2a (Cu2)	109.9(×4)	108.5 (×2)	0.18	0.94	0.5
			Cu ₂ ZnGeS ₄		
2c (Cu1)	108.1 (×2)	112.3 (×4)	1.77	0.45	1.6
2a (Cu2)	110.8 (×2)	108.8 (×4)	1.88	8.01	4.7

	Cu ₂ ZnSnS ₄		Cu ₂ ZnGeS ₄		
	experimental	calculated	experimental	calculated (model A)	calculated (model C)
⁶⁵ Cu parameters					
$\Omega \left(\text{ppm} \right)$	272 (2 <i>a</i>), 117 (2 <i>c</i>)	284 (2 <i>a</i>), 136 (2 <i>c</i>)	150 (2 <i>a</i>), 83 (2 <i>c</i>)	176 (2 <i>a</i>), 190 (2 <i>c</i>)	185
К	+1 (2 <i>a</i>), -1 (2 <i>c</i>)	+1 (2 <i>a</i>), -1 (2 <i>c</i>)	-1 (2 <i>a</i>), -1 (2 <i>c</i>)	+1 (2 <i>a</i>), -1 (2 <i>c</i>)	-1
C _Q (MHz)	6.5 (2 <i>a</i>), 1.5 (2 <i>c</i>)	7.1 (2 <i>a</i>), 3.6 (2 <i>c</i>)	15.2 (2 <i>a</i>), 4.3 (2 <i>c</i>)	15.5 (2 <i>a</i>), 4.2 (2 <i>c</i>)	8.2
η	0 (2 <i>a</i>), 0 (2 <i>c</i>)	0 (2 <i>a</i>), 0 (2 <i>c</i>)	0 (2 <i>a</i>), 0 (2 <i>c</i>)	0 (2 <i>a</i>), 0 (2 <i>c</i>)	0
⁶⁷ Zn paramet	ters				
Ω (ppm)	29	34	b	15	17
К	-0.5	-1	b	+1	-1
$C_{\rm Q}$ (MHz)	0.9	1.8	2.8	5.1	7.4
η	0	0	0.2	0	0
¹¹⁹ Sn parame	ters				
$\Omega \left(\text{ppm} \right)$	32	39			
К	-0.4	-1			
⁷³ Ge paramet	ters				
$\Omega \left(\text{ppm} \right)$			14 ^b	26	39
К			-1 b	-1	+1
$C_{\rm Q}$ (MHz)			0.3	0.3	1.8
η			0.0	0	0

Table S7. Comparison of Experimental and DFT-Calculated NMR Parameters for Cu₂ZnSnS₄ and Cu₂ZnGeS₄.^{*a*}

^{*a*} Uncertainties are ±5 ppm for Ω , ±0.05 for κ , ±0.1 MHz for C_Q , and ±0.1 for η . ^{*b*} Ω and κ do not noticeably improve the fittings.

	$\delta_{ m iso}~(m ppm)$	Ω (ppm)	К	C _Q (MHz)
2 <i>a</i> _1	761	255	+1	7.5
2 <i>a</i> _2	720	220	+1	11.8
2 <i>a</i> _3	690	132	-1	16.5
2 <i>c</i> _1	795	101	-1	1.5
2 <i>c</i> _2	805	99	-1	2.6
2 <i>c</i> _3	780	81	-1	4.4

Table S8. ⁶⁵Cu NMR Parameters for Cu₂ZnSn_{0.8}Ge_{0.2}S₄ ^{*a*}

^{*a*} The labels 1, 2, 3 refer to C_Q values in ascending order for 2a and 2c sites.

Table S9. Chemical Shifts and Linewidths for 119 Sn and 73 Ge MAS NMR Spectra for Cu₂ZnSn_{1-x}Ge_xS₄

		¹¹⁹ Sn		⁷³ Ge	
x	compound	δ _{iso} (ppm)	FWHM (Hz)	δ _{cgs} (ppm)	FWHM (Hz)
0	Cu_2ZnSnS_4	121.5	795		
0.05	$Cu_2ZnSn_{0.95}Ge_{0.05}S_4$	-119.8	919	21.2	280
0.20	$Cu_2ZnSn_{0.80}Ge_{0.20}S_4$	-118.1	1252	21.6	195
0.40	$Cu_2ZnSn_{0.60}Ge_{0.40}S_4$	-112.1	1080	23.4	488
0.60	$Cu_2ZnSn_{0.40}Ge_{0.60}S_4$	-111.4	2254	23.1	236
0.80	$Cu_{2}ZnSn_{0.20}Ge_{0.80}S_{4}$	-103.2	1199	26.3	151
1.00	Cu ₂ ZnGeS ₄			28.5	95

x	compound	$\delta_{ m iso} (m ppm)$	$\delta_{ m cgs} (m ppm)$
0	Cu_2ZnSnS_4	361	359
0.05	$Cu_2ZnSn_{0.95}Ge_{0.05}S_4$		361
0.20	$Cu_{2}ZnSn_{0.80}Ge_{0.20}S_{4}$		368
0.40	$Cu_2ZnSn_{0.60}Ge_{0.40}S_4$		382
0.60	$Cu_2ZnSn_{0.40}Ge_{0.60}S_4$		378
0.80	$Cu_{2}ZnSn_{0.20}Ge_{0.80}S_{4}$		367
1.00	Cu ₂ ZnGeS ₄	358	343

Table S10. Isotropic Chemical Shifts and Centre-of-Gravity Shifts of ⁶⁷Zn MAS NMR Spectra for Cu₂ZnSn_{1-x}Ge_xS₄

Figure S1. Local environments around Cu atoms in three structural models of Cu_2ZnGeS_4 .

Figure S2. Experimental (black) and simulated (blue) 65 Cu NMR spectra of stationary samples at three applied magnetic fields for (a) Cu₂ZnGeS₄ and (b) Cu₂ZnSnS₄.

Figure S3. Experimental (black) and simulated (blue) ⁶⁵Cu NMR spectra of stationary samples for Cu₂ZnGeS₄ in models A and C. Parameters for the simulated spectra are listed in Table S5.

Figure S4. Experimental (black) and simulated (dark blue) 65 Cu NMR spectra of stationary samples for Cu₂ZnSn_{0.2}Ge_{0.8}S₄ in model A. Parameters for the simulated spectra are listed in Table S6.

Figure S5. (a) Experimental (black) and simulated (blue) ¹¹⁹Sn slow spinning ($\omega_r/2\pi = 3$ kHz) and non-spinning NMR spectra for Cu₂ZnSnS₄ ($B_0 = 11.75$ T, $\delta_{iso} = -121$ ppm, $\Omega = 32$ ppm, and $\kappa = 0.4$). (b) Comparison of slow MAS ($\omega_r/2\pi = 3$ kHz) ¹¹⁹Sn spectra for Cu₂ZnSnS₄ and Cu₂ZnSn_{0.4}Ge_{0.6}S₄ at 11.75 T.

Figure S6. Experimental (black) and simulated (blue) (a) non-spinning and (b) ⁷³Ge MAS ($\omega_r/2\pi$ = 5 kHz) NMR spectra for Cu₂ZnGeS₄ (δ_{iso} = 28.5 ppm, C_Q = 0.3 MHz, η = 0) at 21.1 T.

Figure S7. (a) Fittings of Tauc plots to extract optical band gaps. (b) Band gaps in $Cu_2ZnSn_{1-x}Ge_xS_4$.

Figure S8. HSE06 band structure for (a) Cu₂ZnSnS₄, (b) Cu₂ZnSnGeS₄, and (c) Cu₂ZnGeS₄.

Figure S9. Density of states, crystal orbital Hamiltonian populations, and crystal orbital bond indices for (a) Cu₂ZnSnS₄, (b) Cu₂ZnSnGeS₄, and (c) Cu₂ZnGeS₄.