Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Exactly regulated copper catalysts exploiting isolated photoelectrochemical reduction of cuprous oxides and random mesh-structured TiO₂ for enhanced photoelectrochemical CO₂ conversion

Shin Young Oh^{1,a}, Dong Su Kim^{1,a,b}, Hak Hyeon Lee^a, Kun Woong Lee^b, Ji Hoon Choi^a, Won Seok Yang^a, Young Su Choi^a, Dong Wook Kim^a, Jee Won Byeon^a, Ho Seong Lee^c, and Hyung Koun Cho^{*,a,b}

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
^b Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU)
2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
^c Department of Materials Science and Metallurgical Engineering, Kyungpook National
University, 80, Daehak-ro, Buk-gu, Daegu, 41566 Korea
¹ Shin Young Oh and Dong Su Kim contributed equally to this work
*Corresponding author. Tel.: +82 31 290 7364
E-mail: chohk@skku.edu

Experimental Section

*Cu*₂*O* thin film using electrodeposition:

The substrate was a 180 nm ITO (10-15 Ω sq.⁻¹) conductive film with glass. On top of this, a Cu₂O layer was formed in an area of only 20 mm × 30 mm by taping. Before electrodeposition, the ITO was cleaned with acetone, ethanol, and distilled water for 20 min each via sonication. Cu₂O was prepared via cathodic electrodeposition using a three-electrode system consisting of a bilayer including a seed layer. Ag/AgCl (saturated 3 M KCl) and Pt mesh (2.5 cm × 2.5 cm) were used as the reference and counter electrodes, respectively. A seed layer (Cu₂O:Sb) of 200 nm thickness was preferentially formed. The chemical solution was prepared using 0.4 M copper sulfate (CuSO₄, Junsei, >98%) and 3 M lactic acid solution (C₃H₆O₃, 85% aqueous solution) in distilled water (18 Ω) and adjusted to pH 10 using 4 M sodium hydroxide (NaOH, Sigma-Aldrich) at 60 °C. Then, 3 mM antimony sulfate (Sb₂(SO₄)₃, Sigma-Aldrich, >98%) was doped to form a seed layer. Electrodeposition was performed at -0.5 V vs. Ag/AgCl until reaching -0.16 C cm⁻². Then, the undoped Cu₂O was formed on the seed layer at pH 11, -0.5 V vs.

Atomic layer deposition of TiO₂:

 TiO_2 , an RM TiO_2 protective layer, was deposited via atomic layer deposition (ALD). The precursor consists of tetrakis (dimethylamino)titanium in a 75 °C chamber and H₂O as an oxygen source at room temperature. Ti Precursor 0.3 s pulse, Oxygen Precursor 0.1 s pulse, and 20 s pause were configured as one cycle. To deposit 2.5 nm TiO_2 , 40 cycles were performed under an Ar flow of 800 sccm, 150 °C. In the case of 10 nm TiO_2 , the same method was used for 160 cycles.

Formation of Cu catalyst:

The Cu catalyst made on Cu_2O is made from each of HER and CO_2RR solutions and is formed electrochemically using a three-electrode system. Each solution was run under the same conditions at pH 7.0 V vs. RHE was applied continuously to form the Cu catalyst.

(Photo-)electrochemical measurement:

The PEC CO_2RR experiments were conducted in a saturated 0.5 M KHCO₃ solution (pH 6.8) using an H-type cell. The three-electrode system consisted of a working (as-prepared photocathode sample), reference (saturated 4 M KCl Ag/AgCl), and counter electrode (Pt mesh) and was characterized with the Princeton Applied Research Versa STAT 4 system under a 150 W xenon lamp calibrated with an AM 1.5 Filter. Linear scan voltammetry (LSV) and chronoamperometry (CA) were performed under photo on/off and chopped conditions.

Characterization of photocathodes:

Field-emission scanning electron microscopy (SEM; JSM-7600F, JEOL) and transmission electron microscopy (TEM; JEM-2100F, JEOL) were used to analyze the morphology and structure of the Cu₂O-based photocathodes. Patterns were obtained by X-ray diffraction (XRD; Bruker AXSD8 Discover with a Cu Ka radiation source). The optical characteristics of the film samples were analyzed using an ultraviolet-visible (UV-Vis) spectrophotometer (Cary 5000, Agilent Technologies). Surface chemical variations were confirmed using X-ray photoelectron

spectroscopy (XPS, NEXSA, Thermo Fisher Scientific). Copper ion extraction was detected using an inductively coupled plasma-optical emission spectrometer (ICP-OES; Agilent 5100, PerkinElmer AVIO). Time-resolved photoluminescence (TRPL) measurements were conducted using an inverted-type scanning confocal microscope with a 40× objective and 375 nm laser (TRPL, MicroTime-200, Picoquant).

Product analysis:

Hydrogen and Carbon monoxide were detected by gas chromatography (GC, 7890B, Agilent, with 9 ft 1/8 2 mm Molsieve 5A 80/100 UM columns and 6 ft 1/8 2 mm Porapak Q 80/100 SS columns) under 1-sun illumination. H-type cells isolated through a membrane were used. Quantitative analysis of the products was conducted using standard gas.

Fig. S1 Properties of electrodeposited Cu₂O. (a) X-Ray diffractometer (XRD) and scanning electron microscopy (SEM) top image of bare Cu₂O and (b) SEM cross image. (c) Absorbance and (d) transmittance analyses. (e) LSV profile of the CO₂ electrolyte with a scavenger for thicknesses of 100 nm, 500 nm, 1 μ m, 1.5 μ m, 2 μ m, 3 μ m (-0.5 V vs. Ag/AgCl).

(a) CO_2 purging saturation time in KHCO₃ (60 min)

Fig. S2 (a) Change in the pH of 0.5 M saturated $KHCO_3$ solution as a function of CO_2 gas purging time.

Fig. S3 Chronoamperometry (left side), Q-t (middle side), and product formation (right side) according to potential (0 V, 0.4 V, 0.6 V_{RHE}). Blue: HER solution, Green: CO₂RR solution.

Fig. S4 Linear sweep voltammetry (LSV) curve of Cu_2O in 0.5 M KHCO₃ under dark conditions with a scan rate of 10 mV s⁻¹. In HER solution (blue line) and CO_2RR solution (Green line). The inset graph is an enlargement of the gray box area.

Fig. S5 Schematic of Cu_2O band level at pH 7, including water splitting (blue), CO_2 reduction reaction (green), and self-redox reaction (red) state.

Fig. S6 Amount of H_2 in HER solution (blue) and CO in CO_2RR solution (green) according to potential (0 V_{RHE} , 0.4 V_{RHE} , 0.6 V_{RHE}) up to 200 mC.

Fig. S7 Pourbaix diagram of Cu-based materials.

100 -

0

ò

Fig. S8 Cu metal layer formed by photocorrosion on the surface depending on the amount of charge in HER (blue) and CO_2RR (green) solution (0.4 V_{RHE}). The inset graph is an enlargement of the gray box area.

400

Q (mC)

200

CO₂ RR-electrolyte

800

HER-electrolyte

600

Fig. S9 (a) UV/VIS spectrophotometer and (b) I-t curve of back and front illumination. (c) Schematic image of front and back illumination.

At 0.4 V_{RHE}, HER electrolyte

Fig. S10 Surface change of Cu₂O by continuous photocorrosion at 0, 800, and 2000 mC in HER solution (0.4 V_{RHE})

Fig. S11 Artificially controlled Cu-particles in (a) HER solution and (b) CO₂RR solution at 0 V_{RHE}.

Fig. S12 X-ray photoemission spectroscopy (XPS) spectra of Cu2p and O1s (Al K α =1486.6 eV). (a) Cu2p survey of pristine Cu₂O, C-Cu, and H-Cu. Cu 2p3/2 consists of Cu⁰ = 932.61, Cu⁺ = 932.28 eV, and Cu²⁺ = 934.7 ± 0.1 eV. (b) Cu LMM Auger spectra of pristine Cu₂O, C-Cu, and H-Cu. (c) Graph indicating the movement of the Cu LMM peak maximum. (d-f) Os1 survey of pristine Cu₂O, C-Cu, and H-Cu. O_L=Lattice Oxygen, O_V=Oxygen vacancy, O_{adh}=Adhesion oxygen (chemisorbed oxygen species).

XPS analysis was performed to study the copper and oxidation state of the Cu₂O surface after PEC measurement at 5 mC in the HER and CO_2 electrolytes (Fig. S11a-f). From the Cu2p spectra (Fig S11a and S12), it can clearly be seen that the three samples show typical spectra related to the Cu⁺ oxidation state, with a very small and weak satellite corresponding to the Cu²⁺ state. The BE data used the C 1s (285.5 eV) peaks as a reference. The main peak of Cu 2p3/2 consisted of Cu⁰ at 932.61, Cu⁺ at 932.28 eV, and Cu²⁺ at 934.7 \pm 0.1 eV. However, the peak at 932.3 eV can be assigned to either Cu⁺ or Cu⁰ because their binding energies almost overlap in the spectrum of Cu 2p3/2.^{1,2} To further confirm this attribution, we also examined the CuL3M4.5M4.5 Auger peaks, from which the modified Auger parameter can be calculated (Fig S11b and S11c). This parameter also allowed us to distinguish between Cu⁺ and Cu⁰, which show almost the same chemical shift in Cu2p. Based on the pristine Cu₂O peak, Cu₂O with C-Cu was slightly shifted, but in the case of Cu₂O with H-Cu, the maximum peak shifted by 0.6 eV. Here, greater chemical shifts were observed for Cu LMM than for Cu2p. The presence of Cu⁰ could be due to the partial photocorrosion of Cu₂O during CO₂RR. To further distinguish Cu⁺ from Cu⁰, it was necessary to split the O 1s spectrum. The presence of Cu₂O was also confirmed by the O 1s XPS spectrum (Fig S11d-f), in which the peak located at 530.6 eV is consistent with the value reported for O–Cu in Cu₂O. In addition, in Fig S11f, the increase in O vacancies of Cu₂O containing H-Cu is

expected to originate from the site where Cu metal is formed after oxygen is desorbed using the surface of Cu_2O as a seed.

References

- 1. J. J. Teo, Y. Chang and H. C. Zeng, *Langmuir*, 2006, **22**, 7369–7377.
- 2. J. Wang, C. Li, Y. Zhu, J. A. Boscoboinik and G. Zhou, J. Phys. Chem. Lett., 2022, 13, 5597–5604.

Fig. S13 XPS Cu2p HR survey. (a) Cu₂O. (b) Cu₂O/C-Cu. (c) Cu₂O/H-Cu. The purple area indicates the Cu₂O and Cu phases, and pink indicates the CuO phase.

Fig. S14 LSV curves of ITO substrate in HER, CO_2RR solution under illuminated conditions, and electrode condition images at each indicated part.

Fig. S15 LSV curves for ITO, ITO/Cu₂O, and ITO/Cu₂O/H-Cu in HER solution under no photo illumination.

Fig. S16 Long-term stability of Cu₂O/H-Cu and Cu₂O/C-Cu photoelectrodes in 0.5 M KHCO₃ (0.4 V_{RHE}).

Fig. S17 Various electrodes conforming to overpotential in 0.5 M KHCO₃ and compared to Cu₂O/H-Cu cathode.

Fig. S18 Schematic image of (a) Cu_2O/Cu , Cu film formation as corrosion progresses and (b) $Cu_2O/TiO_2/Cu$ formation of island-grown Cu through (UT) TiO₂.

Fig. S19 H-Cu formation on 2.5 nm TiO_2 according to applied charge (5, 10, 20 mC).

Fig. S20 H-Cu formation on 10 nm TiO₂ according to applied charge (10, 20, 40 mC).

Fig. S21 TEM images of cathodes. (a, b) Cu_2O/TiO_2 . (c, d) $Cu_2O/H-Cu/TiO_2$.

Fig. S22 HRTEM images of Cu₂O/C-Cu illustrating the formation of low-density metal catalysts over 20 nm in size.

Fig. S23 Atomic distances in transmission electron microscopy (TEM) measurement results for Cu and Cu₂O.

Fig. S24 Electrochemical analysis of Cu₂O/TiO₂ (grey), Cu₂O/H-Cu (yellow), and Cu₂O/TiO₂/H-Cu (red) at a dynamic potential (AC signal) of 0.4 V_{RHE} , a frequency ranging from 1 Hz to 1000 kHz, and an amplitude of 10 mV in 0.5 M KHCO₃; (a) electrochemical impedance spectra under dark conditions, and (b) photoelectrochemical impedance spectra under AM 1.5G simulated sunlight (100 mw cm⁻²). (c) In the equivalent circuit, the electrochemical impedance spectroscopy results were fitted using the Z-view software.

Fig. S25 Reaction pathways for CO_2RR toward different products of the Cu_2O/RM -Ti O_2/H -Cu photocathode. This study highlights the dominant CO pathway during the photoelectrochemical CO_2 reduction reaction under illumination.

Table. S1 Photoelectrochemical (PEC) performance table.

Cell configuration <u>Catalyst</u>	Electrolyte	Product	Current density (mA/cm ²) at 0.4 V _{RHE}	Ref.	
Cu	0.5 M KHCO ₃	со	1.57	This work	Ref nce
Cu ₂ O NW/TiO ₂ / <u>Cu</u>	0.3 M KHCO₃	CH₃OH	1.1	[1]	_ 1. K. L S. Lee _ Cho, Jeong
Cu ₂ O/ <u>MOF-Cu₃(BTC)₂</u>	0.1 M acetonitrile	СО	-0.8 (-1.97 V _{Fc/Fc+})	[2]	
Cu foil/ Cu ₂ O/ <u>CuO</u>	0.1 M KHCO ₃	CO, MeOH, Formic	0.3	[3]	
NiO/ <u>Cu</u>	K ₂ CO ₃	НСООН	~0.5	[4]	Lee
Cu foil/ <u>Cu NW</u>	0.1 M KHCO ₃	CH₄	1	[5]	– D. C. J. Ene
Cu ₂ O/ <u>TiO₂</u>	MeCN, 0.1 M Bu4NPF6	СО	0.23 (at 0.6 V _{RHE})	[6]	Che 201
CuBi ₂ O ₄ / <u>TiO₂</u>	0.1 M KHCO ₃	со	0.22 (at 0.6 V _{RHE})	[7]	264
	1	1	1	1	2.

Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu and Y. Xiong, J. Am. Chem. Soc., 2019, **141**, 10924–10929.

3. D. H. Won, C. H. Choi, J. Chung and S. I. Woo, Appl. Catal. B Environ., 2014, 158–159, 217–223.

4. J. S. Duchene, G. Tagliabue, A. J. Welch, X. Li, W. H. Cheng and H. A. Atwater, *Nano Lett.*, 2020, **20**, 2348–2358.

5. Q. Wang, Y. Zhang, Y. Liu, K. Wang, W. Qiu, L. Chen, W. Li and J. Li, J. Electroanal. Chem., 2022, 912,116252.

6. M. Schreier, J. Luo, P. Gao, T. Moehl, M. T. Mayer and M. Grätzel, J. Am. Chem. Soc., 2016, 138, 1938–1946.

7. Y. Wang, H. Wang and T. He, *Chemosphere*, 2021, **264**, 128508.