Electronic Supplementary Information of Theoretical study of the mechanism for photocatalytic CO₂ reduction to methanol over layered double hydroxides

Si-Min Xu,*^a Rui Xu,^b Yu-Quan Zhu,^c Ling Zhu^a and Yingtong Zong*^a

^a College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China. E-mail: xusimin@gnnu.edu.cn (S.-M. Xu), zongyingtong@gnnu.edu.cn (Y. Zong).

^{b.} Jiangxi Intellectual Property Protection Center, Nanchang, 330006, P. R. China.

^{c.} Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, P. R. China.

Contents

Item	Title	Pagination
	Notes	
Supplementary Note 1	Benchmark work on external stress	1
Supplementary Note 2	Benchmark work on work function of Mg ₂ Al-NO ₃ -LDH	2
Supplementary Note 3	Benchmark work on cutoff energy	3
Supplementary Note 4	Benchmark work on k-point meshes	4
Supplementary Note 5	Method to calculate photocatalytic driving force <i>E</i> _{df}	5
	Figures	
Supplementary Figure 1	Work functions of Mg ₂ Al-NO ₃ -LDH with different layers	6
Supplementary Figure 2	Work functions of Mg_2AI-NO_3-LDH with one bilayer and vacuum layer with different thickness	7
Supplementary Figure 3	Main elementary steps in CO_2 reduction to CO, HCOOH, HCHO, CH ₃ OH, and CH ₄	8
Supplementary Figure 4	Band structures of MaM'-NOa-LDHs	9
Supplementary Figure 5	Work functions of $M_2M'-NO_3$ LDHs	10
Supplemental y ligure 5	Optimized geometries of CO ₂ reduction intermediates over Mg-ALNO ₂ -	10
Supplementary Figure 6	LDH	11
Supplementary Figure 7	Optimized geometries of CO_2 reduction intermediates over Mg_2Ga-NO_3 -LDH	12
Supplementary Figure 8	Optimized geometries of CO $_{\rm 2}$ reduction intermediates over Co $_{\rm 2}Al-NO_{\rm 3}-LDH$	13
Supplementary Figure 9	Optimized geometries of CO_2 reduction intermediates over Co_2Ga-NO_3 -LDH	14
upplementary Figure 10	Optimized geometries of CO_2 reduction intermediates over Ni ₂ Al-NO ₃ -LDH	15
upplementary Figure 11	Optimized geometries of CO ₂ reduction intermediates over Ni ₂ Ga-NO ₃ -LDH	16
upplementary Figure 12	Optimized geometries of CO ₂ reduction intermediates over Zn ₂ Al-NO ₃ -LDH	17
upplementary Figure 13	Optimized geometries of CO_2 reduction intermediates over Zn_2Ga-NO_3 -LDH	18
upplementary Figure 14	ΔG of elementary steps in CO ₂ reduction over Mg ₂ Ga-NO ₃ -LDH without illumination and pH O	19
Supplementary Figure 15	ΔG of elementary steps in CO ₂ reduction over Co ₂ Al-NO ₃ -LDH without illumination and pH O	20
Supplementary Figure 16	ΔG of elementary steps in CO ₂ reduction over Co ₂ Ga-NO ₃ -LDH without	21
Supplementary Figure 17	ΔG of elementary steps in CO ₂ reduction over Ni ₂ Al-NO ₃ -LDH without	22
Supplementary Figure 18	ΔG of elementary steps in CO ₂ reduction over Ni ₂ Ga-NO ₃ -LDH without	23
, , ,	illumination and pH 0	
upplementary Figure 19	illumination and pH 0	24
Supplementary Figure 20	ΔG of elementary steps in CO_2 reduction over Zn_2Ga-NO_3-LDH without illumination and pH 0	25
Supplementary Figure 21	ΔG of elementary steps in CO_2 reduction over Mg_Ga-NO_3-LDH with illumination and pH 7	26
Supplementary Figure 22	ΔG of elementary steps in CO_2 reduction over $Co_2Al\text{-}NO_3\text{-}LDH$ with illumination and pH 7	27
upplementary Figure 23	ΔG of elementary steps in CO ₂ reduction over Co ₂ Ga-NO ₃ -LDH with illumination and pH 7	28
upplementary Figure 24	ΔG of elementary steps in CO ₂ reduction over Ni ₂ Al-NO ₃ -LDH with illumination and pH 7	29
upplementary Figure 25	ΔG of elementary steps in CO ₂ reduction over Ni ₂ Ga-NO ₃ -LDH with illumination and pH 7	30
Supplementary Figure 26	ΔG of elementary steps in CO ₂ reduction over Zn ₂ Al-NO ₃ -LDH with illumination and pH 7	31
upplementary Figure 27	ΔG of elementary steps in CO ₂ reduction over Zn ₂ Ga-NO ₃ -LDH with	32
Supplementary Figure 28	Gibbs free energy diagrams of the main reaction nathways for	33
apprendition y rigure 20	energy anglands of the main reaction pathways for	55

	photocatalytic CO ₂ reduction over Co ₂ Al-NO ₃ -LDH, Co ₂ Ga-NO ₃ -LDH, Ni ₂ Al-	
	NO ₃ -LDH, and Zn ₂ Ga-NO ₃ -LDH, respectively	
	Gibbs free energy diagrams of the main reaction pathways for	24
Supplementary Figure 29	photocatalytic CO ₂ reduction over Zn ₂ Al-NO ₃ -LDH	34
Supplementary Figure 30	Work functions of the (001) surface for (ZnCu) ₂ Ga-NO ₃ -LDH	35
Cumplementer Figure 21	ΔG of elementary steps in CO ₂ reduction over (ZnCu) ₂ Ga-NO ₃ -LDH under	20
Supplementary Figure 31	reaction condition	30
Supplementary Figure 22	ΔG_{PDS} for generating CO*, HCOOH*, HCHO*, CH ₃ OH*, and CH ₄ * under	27
Supplementary Figure 32	reaction condition	37
	Tables	
Supplementary Table 1	Experimental lattice parameters of M ₂ M'-NO ₃ -LDHs	38
Supplementary Table 2	Energies of CO2 reduction intermediates at different adsorption sites of	20
Supplementary Table 2	Mg ₂ Al-NO ₃ -LDH	39
Supplementary Table 2	Energies of CO2 reduction intermediates at different adsorption sites of	40
Supplementary Table 3	Mg ₂ Ga-NO ₃ -LDH	40
Supplementary Table 4	Energies of CO2 reduction intermediates at different adsorption sites of	41
Supplementary Table 4	Co ₂ Al-NO ₃ -LDH	41
Supplementary Table 5	Energies of CO_2 reduction intermediates at different adsorption sites of	10
Supplementary Table 5	Co ₂ Ga-NO ₃ -LDH	42
Supplementary Table 6	Energies of CO_2 reduction intermediates at different adsorption sites of	12
Supplementary Table 0	Ni ₂ Al-NO ₃ -LDH	43
Supplementary Table 7	Energies of CO_2 reduction intermediates at different adsorption sites of	44
Supplementary rable /	Ni ₂ Ga-NO ₃ -LDH	44
Supplementary Table 8	Energies of CO_2 reduction intermediates at different adsorption sites of	15
Supplementary Table 8	Zn ₂ Al-NO ₃ -LDH	45
Supplementary Table 9	Energies of CO_2 reduction intermediates at different adsorption sites of	16
Supplementary Table 5	Zn ₂ Ga-NO ₃ -LDH	40
Supplementary Table 10	Energies of CO_2 reduction intermediates at different adsorption sites of	17
	(ZnCu) ₂ Ga-NO ₃ -LDH	77
	References	
Supplementary References	S	48

Notes

Note 1

In our previous work, we have found that the lattice parameters of LDHs are influenced by the external stress set during geometry optimization (*J. Mater. Chem. A*, 2021, **9**, 20466–20482). In general, the lattice parameters *a*, *b*, and *c* decrease with the increasing external stress. In this work, a benchmark test of external stress was performed on Mg₂Al-NO₃-LDH. Mg₂Al-NO₃-LDH was optimized under the external stress of 0.1 – 10.0 GPa with a step length of 0.1 GPa. The lattice parameters *c*, which is more sensitive to external stress than *a* and *b*, matches well with the experimental value under the external stress of 3.8 GPa (*Catal. Today*, 1991, **11**, 173–301). Therefore, the external stress of 3.8 GPa is applied in this work.

In order to obtain an accurate work function of $M_2M'-NO_3-LDH$, the number of bilayers for LDHs and thickness of vacuum layer need to be properly set. Firstly, we performed benchmark calculations on the number of bilayers for Mg₂Al-NO₃-LDH. The vacuum layer was set to be 120 Å. The values of work functions for Mg₂Al-NO₃-LDH with different bilayers were calculated to be 4.738, 4.682, 4.679, 4.850, 4.811, and 4.721 eV for one, two, three, four, five, and six bilayers, respectively, as shown in Fig. S1. The work function of Mg₂Al-NO₃-LDH with only one bilayer (4.738 eV) is close to that with six bilayers (4.721 eV). This result is different from that for metal or metal oxide. Although this result is surprising at first impression, but can be well understood. Unlike metal or metal oxide binding with metal bond or covalent bond, the interaction between LDH matrix and interlayer guest is mainly Coulomb force, and van der Waals force, which is much weaker than covalent bond. Thus the electronic structure of LDH matrix is not severely influenced by the interaction between LDH bilayers. Therefore, the work function of LDH can be well represented by LDH with one bilayer.

On the other hand, we calculated the work functions of Mg₂Al-NO₃-LDH (003) surface (one bilayer) with the thickness of vacuum layer ranging from 20 to 160 Å. As is shown in Fig. S2, the work function of Mg₂Al-NO₃-LDH (003) surface is not converged when the thickness of vacuum layer is smaller than 70 Å. The work function of Mg₂Al-NO₃-LDH (003) surface with the thickness of vacuum layer of 70 Å is only 0.034 eV larger than that with a vacuum layer as thick as 120 Å. Therefore, a vacuum layer with the thickness of 70 Å is sufficient for accurately calculating the work function of LDH (003) surface.

In order to determine the cutoff energy employed in this work, the cutoff energies of both 400 eV and 600 eV were applied to calculate the Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Mg₂Al-NO₃-LDH. The average absolute value of deviation between ΔG obtained by 400 eV and that by 600 eV was calculated to be 0.09 eV, which is smaller than 0.1 eV. Therefore, we believe that a cutoff energy of 400 eV is accurate enough and cost-effective.

In order to determine the *k*-point meshes employed in this work, the *k*-point meshes of both $3 \times 3 \times 1$ and $5 \times 5 \times 1$ were applied to calculate the Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Mg₂Al-NO₃-LDH. The average absolute value of deviation between ΔG obtained by $3 \times 3 \times 1$ and that by $5 \times 5 \times 1$ was calculated to be 0.09 eV, which is smaller than 0.1 eV. Therefore, we believe that a *k*-point meshes of $3 \times 3 \times 1$ is accurate enough and cost-effective.

The photocatalytic driving force E_{df} is identified as the difference between the ΔG in the condition of standard hydrogen electrode (ΔG_{SHE}) and the ΔG under reaction condition ($\Delta G_{Reaction}$), i.e., $E_{df} = \Delta G_{SHE} - \Delta G_{Reaction}$. Then, the following equation can be obtained:

 $E_{\rm df}$

 $=\Delta G_{\rm SHE} - \Delta G_{\rm Reaction}$

 $= (G_{\text{product in the condition of SHE}} - G_{\text{reactant in the condition of SHE}}) - (G_{\text{product in reaction condition}} - G_{\text{reactant in reaction condition}})$

Given that only the Gibbs free energies of H^+ and e^- are different in the condition of standard hydrogen electrode and in reaction condition, the equation can be simplified as follows:

 $E_{\rm df}$

 $= G_{(H^{+} + e^{-}) \text{ in reaction condition }}^{-} - G_{(H^{+} + e^{-}) \text{ in the condition of SHE}}$ $= (G_{H^{+} \text{ in reaction condition }}^{-} - G_{H^{+} \text{ in the condition of SHE}}) + (G_{e^{-} \text{ in reaction condition }}^{-} - G_{e^{-} \text{ in the condition of SHE}})$ $= (G_{H^{+} \text{ in pH 7}}^{-} - G_{H^{+} \text{ in pH 0}}) + (G_{e^{-} \text{ in CBM}}^{-} - (-4.5 \text{ eV}))$ $= -kT \ln 10\Delta pH + E_{CBM} + 4.5 \text{ eV}$ $= E_{CBM}^{-} + 4.09 \text{ eV}$

Figures

Fig. S1 Work functions of the (001) surfaces for Mg_2AI-NO_3-LDH with (a) one layer, (b) two layers, (c) three layers, (d) four layers, (e) five layers, and (f) six layers, respectively. Vacuum level (set as zero point) and Fermi level are labeled with dashed blue line and red line, respectively. Value of the work function is listed in the bracket.

Fig. S2 Work functions of Mg_2AI-NO_3-LDH with one bilayer and vacuum layer with different thickness.

Fig. S3 Main elementary steps in CO₂ reduction to CO, HCOOH, HCHO, CH₃OH, and CH₄. Blue arrows represent adsorption and desorption steps and purple arrows represent reduction steps.

Fig. S4 Band structures of (a) Mg_2AI-NO_3-LDH , (b) Mg_2Ga-NO_3-LDH , (c) Co_2AI-NO_3-LDH , (d) Co_2Ga-NO_3-LDH , (e) Ni_2AI-NO_3-LDH , (f) Ni_2Ga-NO_3-LDH , (g) Zn_2AI-NO_3-LDH , and (h) Zn_2Ga-NO_3-LDH . The band gap energy of each $M_2M'-NO_3-LDH$ is listed in the bracket.

Fig. S5 Work functions of the (001) surfaces for (a) Mg₂Al-NO₃-LDH, (b) Mg₂Ga-NO₃-LDH, (c) Co₂Al-NO₃-LDH, (d) Co₂Ga-NO₃-LDH, (e) Ni₂Al-NO₃-LDH, (f) Ni₂Ga-NO₃-LDH, (g) Zn₂Al-NO₃-LDH, and (h) Zn₂Ga-NO₃-LDH, respectively. Vacuum level (set as zero point) and Fermi level are labeled with dashed blue line and red line, respectively. Value of the work function is listed in the bracket.

Fig. S6 Optimized geometries of reaction intermediates during CO_2 reduction over Mg_2AI-NO_3-LDH : (a) *, (b) CO_2^* , (c) $OCOH^*$, (d) $OCHO^*$, (e) $C(OH)_2^*$, (f) CO^* , (g) $HCOOH^*$, (h) H_2COO^* , (i) COH^* , (j) CHO^* , (k) H_2COOH^* , (l) $HCOH^*$, (m) $HCHO^*$, (n) CH_2^* , (o) CH_2OH^* , (p) CH_2^* , (q) CH_3OH^* , (r) CH_3^* , and (s) CH_4^* , respectively. The color code of each element is displayed on the bottom.

Fig. S7 Optimized geometries of reaction intermediates during CO₂ reduction over Mg₂Ga-NO₃-LDH: (a) *, (b) CO₂*, (c) OCOH*, (d) OCHO*, (e) C(OH)₂*, (f) CO*, (g) HCOOH*, (h) H₂COO*, (i) COH*, (j) CHO*, (k) H₂COOH*, (l) HCOH*, (m) HCHO*, (n) CH*, (o) CH₂OH*, (p) CH₂*, (q) CH₃OH*, (r) CH₃*, and (s) CH₄*, respectively. The color code of each element is displayed on the bottom.

Fig. S8 Optimized geometries of reaction intermediates during CO_2 reduction over Co_2AI-NO_3-LDH : (a) *, (b) CO_2^* , (c) $OCOH^*$, (d) $OCHO^*$, (e) $C(OH)_2^*$, (f) CO^* , (g) $HCOOH^*$, (h) H_2COO^* , (i) COH^* , (j) CHO^* , (k) H_2COOH^* , (l) $HCOH^*$, (m) $HCHO^*$, (n) CH_2^* , (o) CH_2OH^* , (p) CH_2^* , (q) CH_3OH^* , (r) CH_3^* , and (s) CH_4^* , respectively. The color code of each element is displayed on the bottom.

Fig. S9 Optimized geometries of reaction intermediates during CO_2 reduction over CO_2Ga-NO_3-LDH : (a) *, (b) CO_2^* , (c) $OCOH^*$, (d) $OCHO^*$, (e) $C(OH)_2^*$, (f) CO^* , (g) $HCOOH^*$, (h) H_2COO^* , (i) COH^* , (j) CHO^* , (k) H_2COOH^* , (l) $HCOH^*$, (m) $HCHO^*$, (n) CH_2^* , (o) CH_2OH^* , (p) CH_2^* , (q) CH_3OH^* , (r) CH_3^* , and (s) CH_4^* , respectively. The color code of each element is displayed on the bottom.

Fig. S10 Optimized geometries of reaction intermediates during CO₂ reduction over Ni₂Al-NO₃-LDH: (a) *, (b) CO₂*, (c) OCOH*, (d) OCHO*, (e) C(OH)₂*, (f) CO*, (g) HCOOH*, (h) H₂COO*, (i) COH*, (j) CHO*, (k) H₂COOH*, (l) HCOH*, (m) HCHO*, (n) CH₂, (o) CH₂OH*, (p) CH₂*, (q) CH₃OH*, (r) CH₃*, and (s) CH₄*, respectively. The color code of each element is displayed on the bottom.

Fig. S11 Optimized geometries of reaction intermediates during CO₂ reduction over Ni₂Ga-NO₃-LDH: (a) *, (b) CO₂*, (c) OCOH*, (d) OCHO*, (e) C(OH)₂*, (f) CO*, (g) HCOOH*, (h) H₂COO*, (i) COH*, (j) CHO*, (k) H₂COOH*, (l) HCOH*, (m) HCHO*, (n) CH*, (o) CH₂OH*, (p) CH₂*, (q) CH₃OH*, (r) CH₃*, and (s) CH₄*, respectively. The color code of each element is displayed on the bottom.

Fig. S12 Optimized geometries of reaction intermediates during CO_2 reduction over Zn_2AI-NO_3-LDH : (a) *, (b) CO_2^* , (c) $OCOH^*$, (d) $OCHO^*$, (e) $C(OH)_2^*$, (f) CO^* , (g) $HCOOH^*$, (h) H_2COO^* , (i) COH^* , (j) CHO^* , (k) H_2COOH^* , (l) $HCOH^*$, (m) $HCHO^*$, (n) CH^* , (o) CH_2OH^* , (p) CH_2^* , (q) CH_3OH^* , (r) CH_3^* , and (s) CH_4^* , respectively. The color code of each element is displayed on the bottom.

Fig. S13 Optimized geometries of reaction intermediates during CO₂ reduction over Zn₂Ga-NO₃-LDH: (a) *, (b) CO₂*, (c) OCOH*, (d) OCHO*, (e) C(OH)₂*, (f) CO*, (g) HCOOH*, (h) H₂COO*, (i) COH*, (j) CHO*, (k) H₂COOH*, (l) HCOH*, (m) HCHO*, (n) CH*, (o) CH₂OH*, (p) CH₂*, (q) CH₃OH*, (r) CH₃*, and (s) CH₄*, respectively. The color code of each element is displayed on the bottom.

Fig. S14 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Mg₂Ga-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S15 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Co₂Al-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S16 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Co₂Ga-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S17 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Ni₂Al-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S18 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Ni₂Ga-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S19 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Zn₂Al-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S20 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Zn₂Ga-NO₃-LDH in the unit of eV. The condition is pH 0, 298.15 K, 0.1 MPa and without illumination.

Fig. S21 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Mg₂Ga-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S22 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Co₂Al-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S23 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Co₂Ga-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S24 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Ni₂Al-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S25 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Ni₂Ga-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S26 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Zn₂Al-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S27 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over Zn₂Ga-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S28 Gibbs free energy diagrams of the main reaction pathways for photocatalytic CO₂ reduction over (a) Co₂Al-NO₃-LDH, (b) Co₂Ga-NO₃-LDH, (c) Ni₂Al-NO₃-LDH, and (d) Zn₂Ga-NO₃-LDH, respectively.

Fig. S29 Gibbs free energy diagrams of the main reaction pathways for photocatalytic CO_2 reduction over Zn_2AI-NO_3-LDH .

Fig. S30 Work functions of the (001) surface for $(ZnCu)_2Ga-NO_3-LDH$. Vacuum level (set as zero point) and Fermi level are labeled with dashed blue line and red line, respectively.

Fig. S31 Gibbs free energy changes (ΔG) of elementary steps in CO₂ reduction over (ZnCu)₂Ga-NO₃-LDH in the unit of eV. The condition is pH 7, 298.15 K, 0.1 MPa and with illumination.

Fig. S32 ΔG_{PDS} for generating CO^{*}, HCOOH^{*}, HCHO^{*}, CH₃OH^{*}, and CH₄^{*} under reaction condition of (a) Mg₂Al-NO₃-LDH, (b) Mg₂Ga-NO₃-LDH, (c) Co₂Al-NO₃-LDH, (d) Co₂Ga-NO₃-LDH, (e) Ni₂Al-NO₃-LDH, (f) Ni₂Ga-NO₃-LDH, (g) Zn₂Al-NO₃-LDH, (h) Zn₂Ga-NO₃-LDH, and (i) (ZnCu)₂Ga-NO₃-LDH.

d							
	Model	Lattice param			neter (Å	()	
		Ex	periment	tal	С	alculate	ed
		а	b	с	а	b	С
	Mg ₂ Al-NO ₃ -LDH	3.05 ^{S1}	3.05 ^{S1}	8.79 ^{s2}	3.02	3.03	8.78
	Mg ₂ Ga-NO ₃ -LDH	3.09 ^{s3}	3.09 ^{s3}	8.79 ^{s2}	3.05	3.08	8.89
	Co ₂ Al-NO ₃ -LDH	3.09 ^{s4}	3.09 ^{s4}	8.79 ^{s2}	3.03	3.04	8.64
	Co ₂ Ga-NO ₃ -LDH	3.10 ^{S5}	3.10 ^{S5}	8.79 ^{s2}	3.02	3.11	8.95
	Ni ₂ Al-NO ₃ -LDH	3.05 ^{S1}	3.05 ^{S1}	8.79 ^{s2}	3.00	3.03	8.87
	Ni ₂ Ga-NO ₃ -LDH	3.08 ^{s6}	3.08 ^{s6}	8.79 ^{s2}	3.04	3.06	8.84
	Zn ₂ Al-NO ₃ -LDH	3.08 ^{S1}	3.08 ^{S1}	8.79 ^{s2}	3.05	3.06	8.87
	Zn ₂ Ga-NO ₃ -LDH	3.11 ^{S7}	3.11 ^{S7}	8.79 ^{s2}	3.09	3.16	8.96

Table S1 Experimental lattice parameters (a, b, and c) of M₂M'-NO₃-LDHs

woder		Energy (ev)	
	top	bridge	fcc
CO ₂ *	-38890.4470	-38890.4065	-38890.4337
OCOH*	-38906.8336	-38906.7778	-38906.6231
OCHO*	-38907.8194	-38908.1452	-38907.8902
C(OH) ₂ *	-38920.7460	-38920.5563	-38920.7002
CO*	-38452.3374	-38452.3221	-38452.3511
HCOOH*	-38922.5737	-38922.5089	-38922.5183
H ₂ COO*	-38922.3121	-38922.7157	-38922.6347
COH*	-38466.5764	-38466.6712	-38466.6790
CHO*	-38469.5116	-38469.7583	-38468.9898
H ₂ COOH*	-38939.8432	-38940.0609	-38939.6962
	not	-38483.2064	not
псоп	converged		converged
HCHO*	-38485.5958	-38485.8926	-38485.8374
CH*	-38029.2951	-38029.5589	-38029.9054
CH ₂ OH*	-38502.1801	-38502.3360	-38502.3265
CH ₂ *	-38047.7712	-38046.9968	-38047.5121
CH₃OH*	-38518.2744	-38518.1256	-38518.2171
CH₃*	-38075.0703	-38075.2739	-38065.3595
CH ₄ *	-38082.1982	-38082.0234	-38081.9772

 Table S2 Energies of CO2 reduction intermediates at different adsorption sites of Mg2Al-NO3-LDH

 Model

 Energy (eV)

Nodel		Energy (eV)	
	top	bridge	fcc
CO ₂ *	-50856.4136	-50856.3946	-50856.3947
OCOH*	not	E0072 616E	not
	converged	-50872.0105	converged
OCHO*	-50873.9967	-50873.9400	-50873.7769
C(OH) ₂ *	-50886.8090	-50886.6332	-50886.7194
CO*	-50418.2934	-50418.2996	-50418.2924
HCOOH*	-50888.6118	-50888.6084	-50888.5967
H_2COO^*	-50888.6052	-50888.6424	-50888.5583
COH*	-50432.4616	-50432.5101	-50432.4665
CHO*	-50435.3198	-50435.6443	-50434.8036
H_2COOH^*	-50905.8388	-50905.7392	-50905.7133
	not	not	not
псоп	converged	converged	converged
HCHO*	-50451.7151	-50451.5607	-50451.7551
CH*	-49995.6147	-49995.6902	-49995.7483
CH₂OH*	-50468.1680	-50468.3246	-50468.3129
CH ₂ *	-50013.6855	-50013.3585	-50014.1222
CH₃OH*	-50484.3761	-50484.2608	-50484.3233
CH₃*	-50031.9517	-50032.0284	-50031.2464
CH ₄ *	-50048.0124	-50048.0117	-50047.9975

 Table S3 Energies of CO2 reduction intermediates at different adsorption sites of Mg2Ga-NO3-LDH

 Model
 Energy (eV)

Model		Energy (eV)	
	top	bridge	fcc
CO ₂ *	-39665.2331	-39665.2346	-39665.2115
OCOH*	-39681.0485	-39681.2242	-39680.9187
OCHO*	-39682.2021	-39682.3024	-39681.9680
C(OH) ₂ *	-39695.3455	-39695.0108	-39695.3781
CO*	-39227.3984	-39227.4028	-39227.4084
HCOOH*	-39697.2282	-39696.8880	-39697.3786
H ₂ COO*	-39697.2475	-39697.7925	-39697.6048
COH*	-39240.7676	-39241.1512	-39241.1716
CHO*	-39243.6052	-39242.8935	-39242.8536
H ₂ COOH*	-39713.8353	-39714.1663	-39713.7418
HCOH*	-39258.0983	-39258.3035	-39257.9790
HCHO*	-39260.0983	-39260.0104	-39259.9918
CH*	-38803.4617	-38805.5095	-38804.0903
CH ₂ OH*	-39276.5555	-39275.1963	-39276.7322
CH_2^*	-38822.3026	-38822.2657	-38821.8709
CH₃OH*	-39293.0070	-39292.6451	-39292.8131
CH₃*	-38840.3498	-38840.2521	-38840.5143
CH ₄ *	-38856.3248	-38856.8700	-38856.9296

 Table S4 Energies of CO2 reduction intermediates at different adsorption sites of CO2Al-NO3-LDH

 Model
 Energy (eV)

iviodei	Energy (ev)		
	top	bridge	fcc
CO ₂ *	-51623.3559	-51623.4618	-51623.5148
OCOH*	-51637.5067	not converged	-51637.4081
OCHO*	-51640.2971	-51640.4484	-51640.1589
C(OH) ₂ *	-51653.6100	-51653.5089	-51653.6932
CO*	-51185.6303	-51185.6648	-51185.6787
HCOOH*	-51655.2584	-51655.3190	-51655.4344
H_2COO^*	-51655.9113	-51656.2597	-51656.3503
COH*	-51199.3545	-51199.4746	-51199.5358
CHO*	not converged	-51201.2261	-51201.1690
H ₂ COOH*	not converged	-51671.4452	-51671.4582
HCOH*	-51216.2032	not converged	-51216.5382
HCHO*	-51218.1285	-51218.4588	-51218.2720
CH*	-50762.2258	not converged	-50762.4936
СН-ОН*	-51234 7252	not	not
Chigon	51254.7252	converged	converged
CH-*	-50780 4599	not	not
Chi	50700.1555	converged	converged
CH₃OH*	-51251.0075	-51250.8517	-51251.0616
CH₂*	-50798.7906	not	not
		converged	converged
CH ₄ *	-50815.1904	-50815.1148	-50815.1889

 Table S5 Energies of CO2 reduction intermediates at different adsorption sites of Co2Ga-NO3-LDH

 Model
 Energy (eV)

wodei		Energy (eV)	
	top	bridge	fcc
CO ₂ *	-43402.0431	-43402.0910	-43402.0484
OCOH*	-43418.4476	-43418.1125	-43417.7205
OCHO*	-43419.2565	-43419.3552	-43418.6013
C(OH) ₂ *	-43432.2258	-43432.1417	-43432.1411
CO*	-42964.2702	-42963.9394	-42964.1894
HCOOH*	-43434.3967	-43433.5941	-43433.5526
H ₂ COO*	-43433.6592	-43434.7847	-43434.5032
COH*	-42977.9547	-42978.1322	-42978.1743
CHO*	-42980.0729	-42979.8740	-42979.7848
H ₂ COOH*	-43450.5228	-43451.0619	-43451.0378
HCOH*	-42996.0821	-42994.9525	-42995.2125
HCHO*	-42996.8548	-42997.1137	-42997.1672
CH*	-42541.0676	-42541.1864	-42541.1504
CH ₂ OH*	-43014.0009	-43013.9833	-43012.8998
CH_2^*	-42558.5712	-42559.3718	-42559.6508
CH₃OH*	-43029.8385	-43029.7277	-43029.5852
CH₃*	-42577.2406	-42577.8595	-42576.2270
CH ₄ *	-42593.6306	-42593.7421	-42593.6349

 Table S6 Energies of CO2 reduction intermediates at different adsorption sites of Ni2Al-NO3-LDH

 Model
 Energy (eV)

wodei		Energy (ev)	
	top	bridge	fcc
CO ₂ *	-55359.9083	-55359.9504	-55359.9844
OCOH*	-55375.7676	-55376.5728	-55375.7600
OCHO*	-55376.6125	-55377.1770	-55376.6532
C(OH) ₂ *	-55390.1782	-55390.0319	-55390.1473
CO*	-54922.2316	-54922.2252	-54922.2470
HCOOH*	-55392.0768	-55391.9602	-55392.1973
H ₂ COO*	-55391.4731	-55392.7151	-55392.5573
COH*	-54935.9457	-54936.0885	-54935.7257
CHO*	-54939.0971	-54937.9025	-54937.9056
H ₂ COOH*	-55408.5235	-55408.8834	-55408.3682
HCOH*	-54953.8964	-54953.1540	-54952.8040
HCHO*	-54954.8848	-54955.2799	-54954.9641
CH*	-54499.0152	-54498.5798	-54499.0268
CH ₂ OH*	-54971.4913	-54971.9063	-54970.9757
CH_2^*	-54517.0844	-54516.9653	-54516.8616
CH₃OH*	-54987.7009	-54987.6612	-54987.7425
CH₃*	-54535.2775	-54533.7893	-54534.5304
CH ₄ *	-54551.5870	-54551.5907	-54551.2964

 Table S7 Energies of CO2 reduction intermediates at different adsorption sites of Ni2Ga-NO3-LDH

 Model
 Energy (eV)

Model		Energy (eV)	
	top	bridge	fcc
CO ₂ *	-47686.2190	-47686.2425	-47686.2437
OCOH*	not	47702 5056	not
	converged	-47702.5050	converged
OCHO*	-47703.5521	-47703.9425	-47703.5039
C(OH) ₂ *	-47716.5446	-47716.2900	-47716.4278
CO*	-47248.2149	-47248.2222	-47248.1564
HCOOH*	-47718.1824	-47718.2452	-47718.1887
H_2COO^*	-47718.0436	-47718.2667	-47718.1942
COH*	-47262.0017	-47263.3856	-47262.4154
CHO*	-47265.5138	-47265.2938	-47264.4538
H_2COOH^*	-47735.5253	-47735.4087	-47735.3934
HCOH*	-47280.3553	-47280.5120	-47280.5435
HCHO*	-47281.0395	-47281.3845	-47281.2813
CH*	-46825.2912	-46825.5819	-46825.2204
CH-OH*	-47298 1772	not	-47296 6436
chigon	47250.1772	converged	47230.0430
CH ₂ *	-46844.0468	-46844.1175	-46843.2050
CH₃OH*	-47314.0408	-47313.9965	-47314.0177
CH ₃ *	-46862.2165	-46862.2994	-46861.0456
CH ₄ *	-46877.8833	-46877.8737	-46877.8894

 Table S8 Energies of CO2 reduction intermediates at different adsorption sites of Zn2Al-NO3-LDH

 Model
 Energy (eV)

wodei		Energy (ev)	
	top	bridge	fcc
CO ₂ *	-59645.1861	-59645.1591	-59645.1753
OCOH*	-59661.3859	-59661.2080	-59661.8666
OCHO*	-59662.1733	-59662.4024	-59662.3075
C(OH) ₂ *	-59675.4283	-59675.1398	-59675.3143
CO*	-59207.1197	-59207.1177	-59207.1572
HCOOH*	-59677.0530	-59677.2541	-59677.2522
H ₂ COO*	-59676.4597	-59676.9687	-59676.9465
COH*	-59220.8625	-59221.3697	-59221.3059
CHO*	-59223.0579	-59223.7235	-59223.4380
H ₂ COOH*	-59694.3044	-59694.1274	-59694.1259
HCOH*	-59237.7284	-59237.6510	-59237.7072
HCHO*	-59239.8865	-59240.2714	-59240.3621
CH*	-58783.9194	-58783.4883	-58784.0027
CH ₂ OH*	-59256.7859	-59257.2328	-59257.2052
CH_2^*	-58802.4767	-58802.3483	-58801.2728
CH₃OH*	-59272.9040	-59272.8795	-59272.9678
CH₃*	-58820.5245	-58819.2209	-58819.8327
CH_4^*	-58836.8482	-58836.8471	-58836.8229

 Table S9 Energies of CO2 reduction intermediates at different adsorption sites of Zn2Ga-NO3-LDH

 Model
 Energy (eV)

Nodel		Energy (eV)	
	top	bridge	fcc
CO ₂ *	-59417.6124	-59417.6372	-59417.6800
OCOH*	not converged	not converged	-59433.8462
OCHO*	-59434.4482	-59434.6726	-59434.6151
C(OH)₂*	-59447.9759	-59448.6177	-59449.6726
CO*	not converged	-58980.3462	-58979.8378
HCOOH*	-59449.7771	-59450.5387	-59449.8168
H_2COO^*	-59448.7444	-59449.2893	-59449.2030
COH*	-58993.6017	-58993.6996	-58993.6573
CHO*	-58996.5901	-58995.3117	-58995.2977
H ₂ COOH*	-59466.3900	-59466.3943	not converged
HCOH*	not converged	-59010.7624	not converged
HCHO*	-59012.6075	-59012.7731	-59012.6765
CH*	not converged	-58556.6257	-58556.4829
CH ₂ OH*	-59029.1222	-59029.2785	not converged
CH ₂ *	-58574.2100	-58574.5565	-58574.2071
CH₃OH*	-59046.0342	-59045.3992	-59045.4965
CH ₃ *	not converged	-58591.4990	-58593.2393
CH ₄ *	-58609.2886	-58609.3307	-58609.3577

 Table S10 Energies of CO2 reduction intermediates at different adsorption sites of (ZnCu)2Ga-NO3-LDH

 Model
 Energy (eV)

References

S1 A. Dias, L. Cunha and A. C. Vieira, Synthesis and properties of $A_6B_2(OH)_{16}CI_2 \cdot 4H_2O$ (A = Mg, Ni, Zn, Co, Mn and B = AI, Fe) materials for environmental applications, *Mater. Res. Bull.*, 2011, **46**, 1346–1351.

S2 F. Cavani, F. Trifiro and A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, *Catal. Today*, 1991, **11**, 173–301.

S3 U. Unal, Short-time hydrothermal synthesis and delamination of ion exchangeable Mg/Ga layered double hydroxides, *J. Sol. State Chem.*, 2007, **180**, 2525–2533.

S4 Z.-P. Liu, R.-Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada and T. Sasaki, Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies, *J. Am. Chem. Soc.*, 2006, **128**, 4872–4880.

S5 X. Chen, H. Chai, Y. Cao, W. Zhou, Y. Li and Y. Yang, Hierarchical CoGa layered double hydroxides grown on nickel foam as high energy density hybrid supercapacitor, *Chem. Eng. J.*, 2020, **381**, 122620.

S6 A. Alvarez, R. Trujillano and V. Rives, Differently aged gallium-containing layered double hydroxides, *Appl. Clay Sci.*, 2013, **80–81**, 326–333.

S7 G. S. Thomas and P. V. Kamath, The layered double hydroxide (LDH) of Zn with Ga: synthesis and reversible thermal behaviour, *Solid State Sci.*, 2006, **8**, 1181–1186.