Supporting Information

Tough and single lithium-ion conductive nanocomposite electrolytes based on PAES-g-PEG and POSS-PEG for lithium-sulfur battery

Yunho Shin, Anh Le Mong, Chi Nguyen Thi Linh, and Dukjoon Kim*

Y. Shin, A.L. Mong, C.N.T. Linh, Prof. D. KimSchool of Chemical Engineering, Sungkyunkwan University, Gyeonggi, Suwon, 16419,Republic of Korea.E-mail: djkim@skku.edu

Number of page: 22

Number of figure: 15

Figure S1. Synthetic scheme of PAES-COOH and PAES-g-PEG.

Figure S2. (a) ¹H-NMR; and (b) FTIR spectra of PAES-COOH and PAES-g-PEG.

Figure S3. Synthetic scheme of POSS-PEG.

Figure S4. FTIR spectra of POSS and POSS-PEG 2000 nanoparticles.

Figure S5. Nanoparticle size of (a) POSS and (b) POSS-PEG 2000 using DLS analysis.

Figure S6. FESEM images of PAES-g-PEG membranes containing different amounts of POSS-PEG 2000 at (a) surface; and (b) cross-section.

Figure S7. Miscibility of PAES, PEG, and POSS-PEG in OS.

Figure S8. Effect of (a-c) OS concentration; and (d-f) LiFSI concentration on ionic conductivity and mechanical property of PAES-g-PEG membrane.

Figure S9. Effect of (a-c) SN concentration on ionic conductivity and mechanical property of PAES-g-PEG membrane; and (d, e) POSS-PEG 2000 concentration on ionic conductivity of PAES-g-PEG membrane without SN additive.

Figure S10. (a-c) Nyquist plot; and (d) ionic conductivity of PAES-g-PEG membranes containing POSS-functionalized with various PEG side chain lengths.

Figure S11. Thermal activation energy of PAES-g-PEG membranes containing different amounts of POSS-PEG 2000 and SN.

Figure S12. Chronoamperometry curves and interfacial resistance before and after polarization of PAES-g-PEG membranes containing various POSS-PEG 2000 contents at 5 wt.% SN.

Figure S13. Chronoamperometry curves and interfacial resistance before and after polarization of PAES-g-PEG membranes containing different concentrations of POSS-PEG 2000 and SN.

Figure S14. Comparison of interfacial stability of symmetric Li/Li cells containing PAES-g-PEG/POSS-PEG 2000/SN with that of Li/Li cells using other solid electrolytes recently published. ^{1–11}

Figure S15. Cycling performance of Li/SPE/S cell assembled with PAES-g-PEG membrane containing POSS-PEG 2000 5% and SN 5% at 2.0 C-rate.

Table S1. Comparison of ionic conductivity (σ), tensile strength and electrochemical stability window of PAES-g-PEG/POSS-PEG 2000/SN membrane with those of other electrolytes recently reported.^{12–24}

Electrolyte membranes	σ	TS ^{a)}	ESW ^{b)}	[Dof]
	(mS cm ⁻¹)	(MPa)	(V)	נוגנון
GPE-PI10	6.22	*	5.5	[12]
Poly(PEG-co-BTA)/zwitterion	4.79	0.05	4.5	[13]
PAES-g-PEG/POSS-PEG 2000/SN	2.78	3.7	4.9	This work
PIL-UPy/ LiTFSI (DOL+DME)	1.57	0.047	5.3	[14]
PAES-g-2PEG/IL-EC	1.15	0.9	4.95	[15]
ultrathin dual-salt PEO	0.57	2.4	4.8	[16]
PEO/LiTFSI/In2O3	0.527	5.1	4.6	[17]
PVAC/LLZTO	0.496	5.97	5.4	[18]
PI/PVDF/LiTFSI	0.41	6.1	5.1	[19]
PVDF+CA/BPSO-LiTFSI	0.4	6.8	4.7	[20]
PZEw-50%	0.275	*	4.94	[21]
F-PMIA@ZIF-8-PEO-LiTFSI	0.239	8.39	5.1	[22]
PEO/LiTFSI/ox-PIL@GO	0.101	0.43	5.28	[23]
PEO/POSS-PEG1000	0.08	0.406	5.08	[24]

^{a)} Tensile strength and ^{b)} electrochemical stability window.

Discharge capacity (mAh g ⁻¹)			Capacity retention		
0.2C	0.5C	1.0C	2.0C	(%) (C /cycle number)	[Ket]
1200	1100	910	600	66.3% (0.5C/100 th)	[26]
985	890	749	-	84% (0.2C/250th)	[27]
950	817	613	583	62.2% (0.1C/75 th)	[25]
980.1	929.9	865.9	772.8	85.3% (0.2C/200 th)	This
				82.0%(2.0C/200 th)	work
910	766	624	543	87.1% (2.0C/300 th)	[28]
890	795	750	600	74% (0.2C/100 th)	[29]
873	810	500	400	72.6% (0.2C/60 th)	[30]
779	621	325	220	70% (0.5C/300 th)	[31]
750	450	-	-	55% (0.2C/350 th)	[32]
692.9	428.4	362.3	-	75% (0.1C/100 th)	[33]
552.8	226.4	-	-	72% (0.2C/100 th)	[34]
450	300	-	-	85% (0.1C/50 th)	[35]
	Disch 0.2C 1200 985 950 980.1 910 890 873 779 750 692.9 552.8 450	Discharge cap 0.2C 0.5C 1200 1100 985 890 950 817 980.1 929.9 910 766 890 795 873 810 779 621 750 450 692.9 428.4 552.8 226.4 450 300	Discharge capacity (m/ 0.2C 0.5C 1.0C 1200 1100 910 985 890 749 950 817 613 980.1 929.9 865.9 910 766 624 890 795 750 873 810 500 779 621 325 750 450 - 692.9 428.4 362.3 552.8 226.4 - 450 300 -	Discharge capacity (mA+ g-1)0.2C0.5C1.0C2.0C12001100910600985890749-950817613583980.1929.9865.9772.8910766624543890795750600873810500400779621325220750450692.9428.4362.3-552.8226.4450300	Discharge capacity (mAh g-1)(C /cycle number) $0.2C$ $0.5C$ $1.0C$ $2.0C$ Capacity retention (%) (C /cycle number) 1200 1100 910 600 $66.3\% (0.5C/100^{th})$ 985 890 749 - $84\% (0.2C/250^{th})$ 950 817 613 583 $62.2\% (0.1C/75^{th})$ 980.1 929.9 865.9 772.8 $85.3\% (0.2C/200^{th})$ 980.1 929.9 865.9 772.8 $85.3\% (0.2C/200^{th})$ 910 766 624 543 $87.1\% (2.0C/300^{th})$ 910 766 624 543 $87.1\% (2.0C/300^{th})$ 890 795 750 600 $74\% (0.2C/100^{th})$ 873 810 500 400 $72.6\% (0.2C/60^{th})$ 779 621 325 220 $70\% (0.5C/300^{th})$ 692.9 428.4 362.3 - $55\% (0.2C/350^{th})$ 692.9 428.4 362.3 - $72\% (0.2C/100^{th})$ 450 300 $85\% (0.1C/50^{th})$

Table S2. Comparison of the S/SPE/Li cell performance based on PAES-g-PEG/POSS-PEG2000/SN membranes with those based on some other electrolytes recently reported.

Reference

- D. Zhou, A. Tkacheva, X. Tang, B. Sun, D. Shanmukaraj, P. Li, F. Zhang, M. Armand and G. Wang, *Angewandte Chemie International Edition*, 2019, **58**, 6001–6006.
- 2 M. Yao, H. Zhang, K. Dong, B. Li, C. Xing, M. Dang and S. Zhang, J. Mater. Chem. A, 2021, 9, 6232–6241.
- 3 M. Jia, P. Wen, Z. Wang, Y. Zhao, Y. Liu, J. Lin, M. Chen and X. Lin, *Advanced Functional Materials*, 2021, **31**, 2101736.
- 4 H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen, X. Li, J. Gao, Y. Li, H. Li, J. Qiu and W. Zhou, *Angewandte Chemie International Edition*, 2021, **60**, 18335–18343.
- 5 Y. H. Jo, B. Zhou, K. Jiang, S. Li, C. Zuo, H. Gan, D. He, X. Zhou and Z. Xue, *Polym. Chem.*, 2019, **10**, 6561–6569.
- 6 H. Li, Y. Du, X. Wu, J. Xie and F. Lian, Advanced Functional Materials, 2021, **31**, 2103049.
- 7 R.-A. Tong, L. Chen, G. Shao, H. Wang and C.-A. Wang, *Journal of Power Sources*, 2021, 492, 229672.
- 8 D. Lee, S. Sun, H. Park, J. Kim, K. Park, I. Hwang, Y. Jung, T. Song and U. Paik, *Journal of Power Sources*, 2021, **506**, 230158.
- 9 F. Zhao, S. H. Alahakoon, K. Adair, S. Zhang, W. Xia, W. Li, C. Yu, R. Feng, Y. Hu, J. Liang, X. Lin, Y. Zhao, X. Yang, T.-K. Sham, H. Huang, L. Zhang, S. Zhao, S. Lu, Y. Huang and X. Sun, *Advanced Materials*, 2021, **33**, 2006577.
- 10F. Fu, W. Lu, Y. Zheng, K. Chen, C. Sun, L. Cong, Y. Liu, H. Xie and L. Sun, *Journal of Power Sources*, 2021, **484**, 229186.

- 11 X. Tian, P. Yang, Y. Yi, P. Liu, T. Wang, C. Shu, L. Qu, W. Tang, Y. Zhang, M. Li and B. Yang, *Journal of Power Sources*, 2020, **450**, 227629.
- 12H. Zhang, J. Chen, J. Liu, X. Zhang, J. Yang, Y. Nuli, H. Ma and J. Wang, *Energy Storage Materials*, 2023, **61**, 102885.
- 13K. Deng, S. Zhou, Z. Xu, M. Xiao and Y. Meng, *Chemical Engineering Journal*, 2022, 428, 131224.
- 14P. Guo, A. Su, Y. Wei, X. Liu, Y. Li, F. Guo, J. Li, Z. Hu and J. Sun, *ACS Appl. Mater. Interfaces*, 2019, **11**, 19413–19420.
- 15 A. L. Mong and D. Kim, Energy Storage Materials, 2022, 47, 394–407.
- 16F. Fu, Y. Zheng, N. Jiang, Y. Liu, C. Sun, A. Zhang, H. Teng, L. Sun and H. Xie, *Chemical Engineering Journal*, 2022, **450**, 137776.
- 17X. Zhang, H. Zhang, Y. Geng, Z. Shi, S. Zhu, Q. Xu and Y. Min, *Chemical Engineering Journal*, 2022, 444, 136328.
- 18K. Fan, X. Lai, Z. Zhang, L. Chai, Q. Yang, G. He, S. Liu, L. Sun, Y. Zhao, Z. Hu and L. Wang, *Journal of Power Sources*, 2023, 580, 233342.
- 19Y. Ma, Y. Jiao, Y. Yan, W. Chen, Y. Li, M. Zhou, D. Chen and J. Zhu, *Journal of Power Sources*, 2022, **548**, 232034.
- 20L. Chen and L. Fan, *Energy Storage Materials*, 2018, **15**, 37–45.
- 21 Y. Tao, W. Wei, Q. Gu, X. Jiang and D. Li, *Materials Letters*, 2023, 351, 134934.
- 22S. Luo, N. Deng, H. Wang, Q. Zeng, Y. Li, W. Kang and B. Cheng, *Chemical Engineering Journal*, 2023, **474**, 145683.
- 23 W. Bao, Z. Hu, Y. Wang, J. Jiang, S. Huo, W. Fan, W. Chen, X. Jing, X. Long and Y. Zhang, *Chemical Engineering Journal*, 2022, **437**, 135420.

- 24J. Ma, M. Zhang, C. Luo, M. Li, X. Guan, F. Chen and X. Ma, *Solid State Ionics*, 2021, 363, 115606.
- 25X. Zhang, T. Zhang, Y. Shao, H. Cao, Z. Liu, S. Wang and X. Zhang, ACS Sustainable Chem. Eng., 2021, 9, 5396–5404.
- 26Y. Ji, K. Yang, M. Liu, S. Chen, X. Liu, B. Yang, Z. Wang, W. Huang, Z. Song, S. Xue, Y. Fu, L. Yang, T. S. Miller and F. Pan, *Advanced Functional Materials*, 2021, 31, 2104830.
- 27P. Chiochan, X. Yu, M. Sawangphruk and A. Manthiram, *Advanced Energy Materials*, 2020, 10, 2001285.
- 28X. Wang, X. Hao, Z. Hengjing, X. Xia and J. Tu, *Electrochimica Acta*, 2020, **329**, 135108.
- 29S. Huang, Y. Wang, J. Hu, Y. Von Lim, D. Kong, L. Guo, Z. Kou, Y. Chen and H. Y. Yang, *NPG Asia Materials*, 2019, **11**, 55.
- 30F. Chen, Y. Zhang, Q. Hu, S. Cao, S. Song, X. Lu and Q. Shen, *Journal of Solid State Chemistry*, 2021, **301**, 122341.
- 31 H. Du, S. Li, H. Qu, B. Lu, X. Wang, J. Chai, H. Zhang, J. Ma, Z. Zhang and G. Cui, Journal of Membrane Science, 2018, **550**, 399–406.
- 32S. Chen, B. Ding, Q. Lin, Y. Shi, B. Hu, Z. Li, H. Dou and X. Zhang, *Journal of Electroanalytical Chemistry*, 2021, 880, 114874.
- 33 Y. Wang, G. Wang, P. He, J. Hu, J. Jiang and L.-Z. Fan, *Chemical Engineering Journal*, 2020, **393**, 124705.
- 34G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen, J. Yang and X. Yao, *Energy Storage Materials*, 2021, **38**, 249–254.

35A. Santiago, J. Castillo, I. Garbayo, A. Saenz de Buruaga, J. A. Coca Clemente, L. Qiao,
R. Cid Barreno, M. Martinez-Ibañez, M. Armand, H. Zhang and C. Li, ACS Appl. Energy Mater., 2021, 4, 4459–4464.