Ultrathin NiO Nanosheets Anchored to A Nitrogen-Doped Dodecahedral

Carbon Framework for Aqueous Potassium-Ion Hybrid Capacitors

Supporting Figures

Fig. S1. TGA curve of NiO/N-HPC under oxygen atmosphere.

Fig. S2. SEM image and corresponding EDS mappings of N-HPC.

Fig. S3. AFM image of the NiO nanosheet from NiO/N-HPC and its corresponding height profile.

Fig. S4. SEM image of bulk NiO.

Fig. S5. High resolution XPS survey spectra of a) O 1s and b) Ni 2p in $Ni(OH)_2/N$ -HPC.

Fig. S6. High-resolution XPS spectrum for Ni 2p of NiO/N-HPC after cycling process.

Table S1.	Comparison	of energ	y and	power	density	of the	NIO/N-HPC//N-HPC APIHO) with
other rep	orted works.							

	Energy density	Power density	Ref.
	(Wh kg⁻¹)	(W kg ⁻¹)	
SC//Zn-NiHCF	9.16	153	J. Energy Storage 2020, 31 ,
			101667.
Co ₉ S ₈ @Ni(OH) ₂ //AC	12.5	252.8	J. Mater. Chem. A 2017, 5 ,
			22782-22789.
NiCo ₂ O ₄ @MnO ₂ //AG	9.4	175	J. Power Sources 2014, 270 ,
			426-433.
MnO ₂ /MGC//MGC	6.8	62	ACS Nano 2013, 7 , 174-
			182.
AC//PB	28	214	Electrochim. Acta 2017,
			232 , 106-113.
CoMn ₂ O ₄ //graphene	7.4	1900	Electrochim. Acta 2014,
			146 , 429-436.
α-Co(OH) ₂ /Co ₃ O ₄ //AC	22.4	290	Electrochim. Acta 2014,
			141 , 234-240.
NiCo ₂ O ₄ //FeSe ₂	22.4	163	J. Mater. Chem. A 2017, 5 ,
			5568-5576.
NiO/N-HPC//N-HPC	21.95	9000	This work