Supporting Information

Thermally Co-Evaporated Ternary Chalcogenide AgBiS₂ Thin Films for Photovoltaic Applications: New Route for AgBiS₂ Synthesis and Phase Investigation

Minho Choi^{a,†}, *Suwhan Kim^{b,†}*, *Minwoo Lee^c*, *Jae Sung Yun^d*, *Vijay C. Karade^e*, *Jongchul Lim^f*, *JungYup Yang^g and Jongsung Park^{a,b*}*

^aDepartment of Energy Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.

^bFuture Convergence Technology Research Institute, Gyeongsang National University, Jinju,

Gyeongnam 52828, Republic of Korea.

°School of Materials Science and Engineering, University of New South Wales (UNSW),

Sydney, NSW, 2052, Australia.

^dDepartment of Electrical and Electronic Engineering, Advanced Technology Institute (ATI),

University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

^eDepartment of Physics and Astronomy, Wright Center for Photovoltaic Innovation and

Commercialization, University of Toledo, Toledo, Ohio 43606, United States

^fGraduate School of Energy Science and Technology(GEST), Chungnam National University,

Daejeon 34134, Republic of Korea

^gDepartment of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.

*Corresponding Author: <u>j.park@gnu.ac.kr</u> (Prof. J. Park)

Fig. S1 (a) SEM image of $AgBiS_2$ surface morphology and (b) EDS mapping of absorber for Ag, Bi and S elements.

Fig. S2 statistical box plot for the (a) V_{oc} , (b) J_{sc} , (c) fill factor and (d) PCE from 50 devices.

Fig. S3 (a) PCE as a function of $AgBiS_2$ absorber thickness, and J-V curve of the champion device with (b) 130nm and (c) 50nm absorber thickness