Supporting Electronic Information

Tuning the Electrocatalytic Nitric oxide Reduction activity of Copper through Alloying with Nickel for NH₃ production at low Overpotentials

*Harish Reddy Inta, Dinesh Dhanabal, Song Yuyeon and Sangaraju Shanmugam**

Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science &

Technology (DGIST), Daegu 42988, Republic of Korea

*E-mail: sangarajus@dgist.ac.kr

Experimental Section

Electrochemical Measurements

For the electrode preparation, the homogenous catalyst ink was prepared by dispersing the catalyst powder (2 mg) in isopropanol (240 μ L), DIW (40 μ L), and 5 wt% Nafion solution (10 μ L) with the aid of ultrasonication for 30 min. The catalytic ink was loaded onto the microporous carbon layer of GDL through the brush-coating method and subsequently dried in the oven. The electrocatalytic nitric oxide reduction reaction (NORR) activity of the materials is evaluated through the half-cell studies by using a two-compartment H-type cell. The compartments are separated by an anion exchange membrane which was pretreated with NaCl (to remove the membrane additives) and KOH solutions (to convert the membrane into OH-form), respectively. The electrochemical measurements were performed by filling nearly 80% of the cell volume with 1M KOH electrolyte (85 ml) in both compartments. The catalyst coated GDE, Hg/HgO (1M KOH), and Graphite rod were used as working, reference, and counter electrodes. Prior to the measurements the Ar gas was purged into the electrolyte for 30 min to remove the dissolved oxygen. Throughout the NORR studies, the Ar flow was continued through the headspace (over the electrolyte level) of the cell to prevent the $NO₂$ formation (resulting from the reaction between nitric oxide and the residual oxygen). For NORR studies, the electrolyte was saturated with 99.9% NO (flow rate:1 sccm) for 30 minutes. The linear sweep voltammetry was performed in the voltage window of $+0.7$ V to -0.7 V (vs. RHE) at a scan rate of 5 mVs⁻¹. Chronoamperometric (CA) studies were performed at various potentials with regular intervals. All the potential values are converted into RHE scale by using the following Nernst equation.

$$
E_{RHE} = E_{working} + E_{Hg/HgO} + 0.059 \text{ pH}; E_{Hg/HgO} = +0.11 \text{ V}
$$

After the CA studies for 1 hour, 2 ml of electrolyte (dissolved with NORR products) was collected and used to identify and quantify the electrochemically synthesized NORR products such as $NH₃$, and N_2H_4 by using UV-visible spectroscopy and ¹H NMR methods. The Zn-NO battery was assembled by using the GDE coated $Cu_{75}Ni_{25}@NC$ as cathode and polished Zn plate as anode. The anodic and cathodic compartments are filled with 1M KOH, and an anion exchange membrane (AEM) was used as a separator. Prior to the Zn-NO battery performance evaluation the catholyte was saturated with 99.9% NO, and the flow was maintained through battery operation.

Product Quantification

Colorimetric Quantification of NH³ (Indophenol Blue Method)

The indophenol blue method was used to estimate the NH_3 yields. 2 mL of aliquot collected after 1 h of electrolysis was mixed with 2 mL of Reagent A (1 M NaOH containing 5 wt % salicylic acid and 5 wt % trisodium citrate dihydrate), 1 mL of Reagent B (0.05 M sodium hypochlorite), and 200 μ L of Reagent C (1 wt % sodium nitroprusside) and the result mixture is incubated in dark for 1h. After that, the samples are subjected to the UV-visible spectroscopy to record the absorption spectrum in the wavelength range of 500-800 nm, and the peak absorbance at 655 nm is considered to calculate the ammonia yield. Similarly, the $NH₃$ calibration plot was obtained by recording the absorbance values of known ammonium chloride solutions prepared in 1M KOH (Fig. S13).

¹H NMR Quantification of NH³

For quantifying the ammonia through ¹H NMR, 400 μ L of aliquot was mixed with 100 μ L of 4 M H₂SO₄ and 50 μL of DMSO-d6. The internal standard 100 μL of Maleic acid (2500 μM) is added into the above solution mixture. The ¹H NMR spectrum acquisition with ordinarily pulse sequence (zg30) could not produce any characteristic triplet peaks of ammonia, which could be

due to the dominant proton signals raised from the aqueous solvent. By employing the pulse sequence (zgesgp) with 256 scan acquisition, the solvent peak got suppressed and the clear triplet peaks of ammonia were obtained. The Ammonia was quantified by integrating the triplet peaks with respect to the standard maleic acid peak (6.25 δ). The standard NH₃ calibration plot was obtained by recording ¹H NMR spectrum of known ammonium chloride solutions prepared in 1M KOH (Fig. S14).

Colorimetric Quantification of N2H⁴ (Watt and Chrisp Method)

The Watt and Chrisp method is used to identify and quantify the hydrazine side product. Initially, the color reagent was prepared by dissolving 5.99 g of para-(dimethylamino) benzaldehyde in 30 mL of concentrated HCl and 300 mL of ethanol. 2 mL of the aliquot is mixed with 3 mL of DIW and 5 mL color reagent and incubated for 10 min in dark. The UV-visible spectrum of the above solution mixture is recorded in the wavelength range of 420-520 nm and the peak absorbance at a wavelength of 455 nm was considered to calculate the formed hydrazine. Similarly, the N_2H_4 calibration plot was obtained by recording the absorbance values of known N_2H_4 solutions prepared in 1M KOH (Fig. S15).

Equations used for the estimation of NH³ yield rates and FENH3

1. Average Ammonia yield rate $\binom{Y_p}{x_p}$

The average yield rate $\binom{Y_p}{r}$ of ammonia produced from electrocatalytic NORR process was calculated by the following equation:

$$
(C_{product} \times V)
$$

Average yield rate (Y_p) = $\overline{A \times t \times M_w}$

Where Y_p is the mean rate of NH₃ formation (µmol cm⁻² h⁻¹), $C_{product}$ is the concentration of NH₃ formed (estimated by the Indophenol-blue method) after the electrolysis (μ g mL⁻¹), V is the total volume of electrolyte in the cathodic compartment (mL), \hat{A} is the area of cathode (cm²), \hat{b} is the electrolysis time (h), and M_w is the molar mass of NH₃ (g mol⁻¹).

2. Faradaic Efficiency (FE) of NH³

The Faradaic Efficiency (FE) of ammonia was calculated by the following equation:

$$
FE(^{\%}) = \frac{(n \times F \times C_{product} \times V \times 10^{-4})}{M_w \times Q}
$$

Where η is the number of electrons transferred during NORR to NH₃ (5 electrons), η is the Faraday constant (96485 C mol⁻¹), $c_{product}$ concentration of NH₃ formed after the electrolysis (ug mL⁻¹), V is the total volume of electrolyte in the cathodic compartment (mL), M_w is the molar mass of $NH₃$ (g mol⁻¹), and \overline{Q} is the quantity of charge consumed during the electrolysis (C).

Cu ₁₀₀ (QNC)	Name	Type	$\boldsymbol{\mathrm{X}}$	y	z	frac
χ 2 = 2.24						
$\boldsymbol{0}$	Cu1	Cu ⁰	0.00000	0.00000	0.00000	0.2000
$\mathbf{1}$	Cu2	Cu ⁰	0.00000	0.00000	0.00000	0.8000
$Cu_{75}Ni_{25}@NC$	Name	Type	$\mathbf X$	y	\mathbf{Z}	frac
χ 2 = 2.10						
$\boldsymbol{0}$	Ni1	Ni ⁰	0.00000	0.00000	0.00000	0.2500
$\mathbf{1}$	Cu1	Cu ⁰	0.00000	0.00000	0.00000	0.7500
$Cu_{50}Ni_{50}@NC$	Name	Type	$\boldsymbol{\mathrm{X}}$	y	\mathbf{z}	frac
χ 2 = 1.76						
$\boldsymbol{0}$	Ni1	$\mathrm{Ni^{0}}$	0.00000	0.00000	0.00000	0.5000
$\mathbf{1}$	Cu1	Cu ⁰	0.00000	0.00000	0.00000	0.5000
Cu ₂₅ Ni ₇₅ (QNC)	Name	Type	$\boldsymbol{\mathrm{X}}$	y	z	frac
χ 2 = 2.22						
$\overline{0}$	Ni1	Ni ⁰	0.00000	0.00000	0.00000	0.7500
$\mathbf{1}$	Cu1	Cu ⁰	0.00000	0.00000	0.00000	0.2500
$Ni100(\omega)NC$	Name	Type	$\boldsymbol{\mathrm{X}}$	${\bf y}$	Z	frac
χ 2 = 2.10						
$\boldsymbol{0}$	Ni1	Ni ⁰	0.00000	0.00000	0.00000	0.5000
$\mathbf{1}$	Ni2	Ni ⁰	0.00000	0.00000	0.00000	0.5000

Table S1 Rietveld refinement parameters of the all the electrocatalysts.

Fig. S1 Deconvoluted XPS spectra of (a) Cu2p, (b) N1s, and (c) C1s of $Cu₁₀₀(@NC.$

Fig. S2 (a) XPS survey scan of $Cu_{75}Ni_{25}@NC$. The deconvoluted XPS spectra of (b) Cu2p, (c) Ni2p, (d) N1s, and (e) C1s of $Cu_{75}Ni_{25}@NC$.

Fig. S3 Deconvoluted XPS spectra of (a) Cu2p, (b) Ni2p, (c) N1s, and (d) C1s of Cu₅₀Ni₅₀@NC.

Fig. S4 Deconvoluted XPS spectra of (a) Cu2p, (b) Ni2p, (c) N1s, and (d) C1s of Cu₂₅Ni₇₅@NC.

Fig. S5 Deconvoluted XPS spectra of (a) Ni2p, (b) N1s, and (c) C1s of $Ni_{100}@NC$.

Fig. S6 Deconvoluted XPS spectra of (a) N1s, and (b) C1s of NC.

Fig. S7 (a-b) FESEM, (c-d) TEM images of Cu₁₀₀@NC. (e) HRTEM image and (f) the corresponding FFT pattern of Cu₁₀₀@NC. (g) HAADF image and (h-j) elemental mapping of $Cu₁₀₀(@NC.$

Fig. S8 (a-b) FESEM, (c-d) TEM images of $Cu_{50}Ni_{50}@NC$. (e) HRTEM image and (f) the corresponding FFT pattern of $Cu₅₀Ni₅₀(QNC. (g) HAADF image and (h-k) elemental mapping of$ $Cu₅₀Ni₅₀@NC.$

Fig. S9 (a-b) FESEM, (c-d) TEM images of Cu₂₅Ni₇₅@NC. (e) HRTEM image and (f) the corresponding FFT pattern of $Cu_{25}Ni_{75}@NC$. (g) HAADF image and (h-k) elemental mapping of $Cu_{25}Ni_{75}@NC.$

Fig. S10 (a-b) FESEM, (c-d) TEM images of $Ni₁₀₀(QNC.$ (e) HRTEM image and (f) the corresponding FFT pattern of $Ni₁₀₀(QNC. (g) HAADF image and (h-j) elemental mapping of$ $Ni₁₀₀@NC.$

Fig. S11 (a-b) FESEM, (c-d) TEM images of NC. (e) HRTEM image and (f) the corresponding FFT pattern of NC. (g) HAADF image and (h-i) elemental mapping of NC.

Table S2 ICP-OES data of the nanoalloy catalysts.

Fig. S12 Tafels plot for all the electrocatalysts.

Fig. S13 (a-b) The cyclic voltammograms (CV) of the Cu₇₅Ni₂₅@NC near HER region in Ar and NO-saturated electrolyte.

Fig. S14 NH³ standard calibration plots using Indophenol blue method. (a) UV-visible spectra and (b) Calibration curve of standard $NH₃$ concentrations.

Fig. S15¹H NMR standard calibration plots for NH₃ (a)¹H NMR spectra and (b) Calibration curve of standard $NH₃$ concentrations.

Fig. S16 N2H⁴ standard calibration plots using Watt and Chrisp Method. (a) UV-visible spectra and (b) Calibration curve of standard N_2H_4 concentrations.

Fig. S17 CA studies (NO medium) of (a) Cu_{100} (a) C_{U₁₀₀ (b)Cu₇₅Ni₂₅ (a)NC, (c) Cu₅₀Ni₅₀ (a)NC, (d)} $Cu_{25}Ni_{75}@NC$, and (e) $Ni_{100}@NC$ at various potentials.

Fig. S18 UV-visible spectra of aliquots collected after 1 h electrolysis of (a) $Cu₁₀₀(ω)NC,$ (b)Cu₇₅Ni₂₅@NC, (c) Cu₅₀Ni₅₀@NC, (d) Cu₂₅Ni₇₅@NC, and (e) Ni₁₀₀@NC at various potentials.

Table S3 Summary of the NORR performance of the electrocatalysts in 1M KOH at +0.1 V vs RHE.

Fig. S19¹H NMR spectra of the aliquots collected after 1 h electrolysis of Cu₇₅Ni₂₅@NC at various potentials.

Catalysts	Electrolyte	FE _{NH3}	$NH3$ yield rate	Potential	Ref.
		(%)		(V vs.	
				RHE)	
Cu foam	0.25 M $Li2SO4$	93.5	517.1 µmol cm ⁻² h ⁻¹	$-0.9V$	Angew. Chem. Int. Ed.
					2020, 59, 9711-9718
hcp-Co	0.1 M Na ₂ SO ₄	72.58	439.50 µmol cm ⁻² h ⁻¹	-0.6 V	J. Am. Chem. Soc.
					2023, 145, 6899-6904
$Ru_{0.05}Cu_{0.95}$	0.1 M Na ₂ SO ₄	64.9	17.68 µmol cm ⁻² h ⁻¹	-0.5 V	Sci. China. Chem.
					2021, 64, 1493-1497
$Cu-Ti$	0.05 M Na ₂ SO ₄	90	400 µmol cm ⁻² h ⁻¹	-0.6 V	ChemElectroChem.
					2022, 9, e202101273
Ru-LCN	0.5 M Na ₂ SO ₄	65.96	45.02 µmol cm ⁻² h ⁻¹	-0.2 V	ACS Energy Lett.
					2022, 7, 1187-1194
Cu@Co	0.1 M Na ₂ SO ₄	76.54	36.89 µmol cm ⁻² h ⁻¹	-0.5 V	Adv. Mater. 2023,
					2309470
CuFe DS/NC	0.1 M Na ₂ SO ₄	90	112.52 µmol cm ⁻² h ⁻¹	-0.6 V	Adv. Mater. 2023, 35,
					2304646
NiNC@CF	0.5 M PBS	87	94 µmol cm ⁻² h^{-1}	$-0.5 V$	J. Mater. Chem. A
					2022, 10, 6470
$\rm Fe/C$	0.5 M PBS	77	908 µmol cm ⁻² h^{-1}	-0.6 V	ACS Energy Lett.
					2022, 7, 958.
Ni@NC	0.1 M HCl	72.3	34.6 µmol cm ⁻² h ⁻¹	0.16V	Adv. Sci. 2022, 9,
					2201410
$CoNi_{(5:5)}O_x@Cu$	1 M KOH	100	$20 \text{ mg} \text{ h}^{-1} \text{ cm}^{-2}$	-0.68	Adv. Energy Mater.
					2023, 13, 2204231.
$Cu_{75}Ni_{25}@NC$	1 M KOH	79	3.6 µmol h^{-1} cm ⁻²	0.1V	This work

Table S4 Comparison of NH₃ yield rates and FE_{NH3} of Cu₇₅Ni₂₅@NC catalyst with the reported transition metal catalysts for NORR.

Fig. S20 UV-visible spectra of aliquots collected after 1 h electrolysis of Cu₇₅Ni₂₅@NC at various potentials for N_2H_4 detection.

Fig. S21 The cyclic voltammograms of (a) $Cu_{100}@NC$, (b) $Cu_{75}Ni_{25}@NC$, (c) $Cu_{50}Ni_{50}@NC$, (d) $Cu_{25}Ni_{75}@NC$, and (e) $Ni_{100}@NC$ at different scan rates.

Fig. S22 The anodic current density vs scan rate plots for the estimation of double layer capacitance (C_{dl}) of (a) Cu₁₀₀@NC, (b)Cu₇₅Ni₂₅@NC, (c) Cu₅₀Ni₅₀@NC, (d) Cu₂₅Ni₇₅@NC, and (e) $Ni₁₀₀(QNC)$.

Fig. S23 (a) CA curves of various controlled experiments performed at +0.1 V vs. RHE, and (b) The corresponding UV-visible spectra for NH₃ detection.

Fig. S24 The UV-visible spectra of the aliquots collected during the cyclic stability test of $Cu_{75}Ni_{25}@NC.$

Fig. S25 (a) Long term stability (with continuous NO flow) test of Cu₇₅Ni₂₅@NC, and (b) The corresponding NH₃ yield rate and FE_{NH3} at different time intervals.

Fig. S26 PXRD pattern of the GDE supported Cu₇₅Ni₂₅@NC after the stability test.

Fig. S27 Deconvoluted XPS spectra of (a) Cu2p, (b) Ni2p, (c) N1s, and (d) C1s of Cu₂₅Ni₇₅@NC after the stability test.

Table S5 ICP-OES analysis of $Cu_{75}Ni_{25}@NC$ before and after the electrolysis.

Sample	Cu (ppm)	Ni (ppm)	Cu (mM)	Ni (mM)	Cu: Ni ratio
$Cu_{75}Ni_{25}@NC$ (Fresh)	0.139	0.027	0.0021	0.00046	4.5:1
$Cu_{75}Ni_{25}(\omega)NC$ (Post)	0.133	0.03	0.0020	0.0005	4:1

Fig. S28 TEM analysis of Cu₇₅Ni₂₅@NC after stability test. (a-b) TEM images. (c) HRTEM image and (d) the corresponding FFT pattern. (e) HAADF image and (f-i) elemental mapping.

Fig. S29 (a) Discharge curves of $Cu_{100}(a)$ NC based Zn-NO battery at different current densities.

(b) Discharge current densities of $Cu₁₀₀(QNC$ based Zn-NO battery at different voltages.

Fig. S30 UV-visible spectra of aliquots collected after 30 min discharge of (a) $\text{Cu}_{75}\text{Ni}_{25}(\partial \text{NC}$ and (b) $Cu₁₀₀(QNC$ based Zn-NO batteries at various potentials.

Table S6 Comparison of NH³ yield rate and peak power density of our Zn-NO battery with the reported Zn-N2, and Zn-NO batteries.

