Supporting Information

Suppression of Charge Carrier Recombination in Ta₃N₅ Photoanode via Defect Regulation

Guozheng Fan^{ab}, Zhaobo Zhou*^{bc}, Yu Jing*^a, and Thomas Frauenheim^{de}

a. Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. E-mail: yujing@njfu.edu.cn.

b. Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany.

c. Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic. E-mail: zhaoboz@natur.cuni.cz.

d. School of Science, Constructor University, Bremen 28759, Germany.

e. Institute for Advanced Study, Chengdu University, Chengdu 610106, China.

Figure S1: Chemical potentials of Mg and O co-doped Ta_3N_5 system under N-rich region.

Figure S2: Chemical potentials of Sc and O co-doped Ta_3N_5 system under N-rich region.

Figure S3: Chemical potentials of Ti and O co-doped Ta_3N_5 system under N-rich region.

Figure S4: Chemical potentials of Zr and O co-doped Ta_3N_5 system under N-rich region.

Figure S5: Chemical potentials of Hf and O co-doped Ta_3N_5 system under N-rich region.

Figure S6: (P)DOS of (a) $Ta_3N_5-V_N^{\cdot}$, (b) $Ta_3N_5-V_N^{\cdot \cdot}$, (c) $Ta_3N_5-O_N$, (d) $Ta_3N_5-Mg_{Ta}-3O_N$, (e) $Ta_3N_5-Sc_{Ta}-2O_N$, (f) $Ta_3N_5-Ti_{Ta}-O_N$, (g) $Ta_3N_5-Zr_{Ta}-O_N$, and (h) $Ta_3N_5-Hf_{Ta}-O_N$. The vertical gray line is the Fermi energy (eV) and the dashed black line is the total DOS.

Figure S7: Partial electron densities of (a) $Ta_3N_5-V_N^{\cdot}$, (b) $Ta_3N_5-V_N^{\cdot \cdot}$, (c) $Ta_3N_5-O_N$, (d) $Ta_3N_5-Mg_{Ta}-3O_N$, (e) $Ta_3N_5-Sc_{Ta}-2O_N$, (f) $Ta_3N_5-Ti_{Ta}-O_N$, (g) $Ta_3N_5-Zr_{Ta}-O_N$, and (h) $Ta_3N_5-Hf_{Ta}-O_N$.

Figure S8: Time evolution of the VBM, CBM and the defect state of (a) $Ta_3N_5-V_N^{\cdot}$, (b) $Ta_3N_5-V_N^{\cdot \cdot}$, (c) $Ta_3N_5-O_N$, (d) $Ta_3N_5-Mg_{Ta}-3O_N$, (e) $Ta_3N_5-Sc_{Ta}-2O_N$, and (f) $Ta_3N_5-Ti_{Ta}-O_N$, (g) $Ta_3N_5-Zr_{Ta}-O_N$, and (h) $Ta_3N_5-Hf_{Ta}-O_N$. The green lines are the energies of the defect level.

Figure S9: Time-dependent state population evolutions of (a) $Ta_3N_5-V_N^{,}$ (b) $Ta_3N_5-V_N^{,,}$ (c) $Ta_3N_5-O_N$ (d) $Ta_3N_5-Mg_{Ta}-3O_N$, (e) $Ta_3N_5-Sc_{Ta}-2O_N$, (f) $Ta_3N_5-Ti_{Ta}-O_N$, (g) $Ta_3N_5-Zr_{Ta}-O_N$, and (h) $Ta_3N_5-Hf_{Ta}-O_N$. The blue lines are VBM populations, while the orange lines and green lines are those of CBM and defect state, respectively.

Figure S10: FT spectra of autocorrelation functions of the time evolution at 300K of (a) $Ta_3N_5-V_N^{\cdot}$, (b) $Ta_3N_5-V_N^{\cdot \cdot}$, (c) $Ta_3N_5-O_N$, (d) $Ta_3N_5-Mg_{Ta}-3O_N$, (e) $Ta_3N_5-Sc_{Ta}-2O_N$, (f) $Ta_3N_5-Ti_{Ta}-O_N$, (g) $Ta_3N_5-Zr_{Ta}-O_N$, and (h) $Ta_3N_5-Hf_{Ta}-O_N$.

Figure S11: Light absorption coefficients of Ta₃N₅, Ta₃N₅-V_N[×], Ta₃N₅-V_N[×], Ta₃N₅-Mg_{Ta}-V_N[×], and Ta₃N₅-Ti_{Ta}-O_N systems.

	e-h		Dephasing	Bader	Bader	Bader		
	recombination	NACs (meV)	time (fs)	charge of	charge of	charge of		
	time (ns)			Ta1	Ta²	Ta ³		
$Ta_3N_5-V_N^{\cdot}$	1.75	1.22	11.33	2.14	2.10	2.34		
$Ta_3N_5-V_N^{}$	3.07	0.84	10.5	2.42	2.37	2.40		
$Ta_3N_5-O_N$	2.62	1.34	17.35	2.46	2.46	2.48		
Ta₃N₅-	2.78	1.35	12.51	2.46	2.47	2.49		
$Mg_{Ta}-3O_N$								
Ta₃N₅-	2.41	1.33	13.09	2.47	2.48	2.49		
$Sc_{Ta}-2O_N$								
Ta₃N₅-	2.46	1.35	16.78	2.47	2.47	2.48		
$Ti_{Ta}-O_N$								
Ta₃N₅-	2.33	1.39	15.96	2.46	2.47	2.49		
$Zr_{Ta}-O_N$								
Ta₃N₅-	2.33	1.36	14.02	2.46	2.47	2.49		
$Hf_{Ta}-O_N$								

Table S1: e−h recombination time, NACs, dephasing time, and Bader charges of Ta atoms in Figure 1(c) of Ta₃N₅ with doping metal and oxygen atoms. The transition state is CBM to VBM.

Table S2: Bader charges of N atoms in Figure 1(c) and NACs of Ta_3N_5 systems with doping metal and N vacancies (different charge states). The first transition state with superscript 1 is between VBM and the defect state, and superscript 2 is between the defect state and CBM. The superscripts of N are consistent with the labels in Figure 1.

	Bader charge	Bader charge	Bader charge	Bader charge of				
	of N ¹	of N ²	of N ³	N ⁴				
Ta₃N₅	1.40	1.40	1.53	1.55				
$Ta_3N_5-V_N^{\times}$	1.45	1.45	1.59	1.55				
$Ta_3N_5-V_N^{"}$	1.46	1.44	1.59	1.56				
Ta_3N_5 - Mg_{Ta} - V_N^{\times}	1.48	1.48	1.56	1.55				