Supplementary information

Elucidating interfacial parameters of platinum–palladium bulk alloy single crystals

Gabriel Melle^a, Fabian Scholten^b, Juan M. Feliu^a, Enrique Herrero^a, Beatriz Roldan Cuenya^b, Rosa M. Arán-Ais^a*

^a Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E- 03080, Alicante, Spain.
^b Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany.

*Corresponding author: rosa.aran@ua.es

Figure S1. XPS C1s spectra of an as-prepared, flame-annealed, and sputter-annealed Pt(100) single crystal.

Figure S2. Comparison of the voltammetric profiles of the (A1-A4) $Pt_{100-x}Pd_x(111)$ and (B1-B4) $Pt_{100-x}Pd_x(100)$ surfaces, recorded at 0.05 V·s⁻¹, in (black line) 0.1 mol.L⁻¹ HClO₄ and (red line) 0.1 mol.L⁻¹ H₂SO₄.

Figure S3. Typical transient of current for CO displacement at (a1-d1) 100 mV, (a2-d2) 200 mV, and (a3-d3) 300 mV for (a) Pt(111), (b) $Pt_{97}Pd_{03}(111)$, (c) $Pt_{96}Pd_{04}(111)$, and (d) $Pt_{88}Pd_{12}(111)$ surface in 0.1 mol L⁻¹ HClO₄. The black and red curves are the results of experiments repeated on different days.

Table S1. Charge density measured during CO displacement experiments at 0.10, 0.20, or 0.30 V on Pt(111) or PtPd(111) family. Numerical value of the charge density with the error is the mean value and the standard deviation, respectively, determined by replicating the experiments 3 or more times.

E vs. RHE / V	Charge / μC cm ⁻²			
	Pt(111)	$Pt_{97}Pd_{03}(111)$	$Pt_{96}Pd_{04}(111)$	$Pt_{88}Pd_{12}(111)$
0.100	141.5 ± 1.5	137.6 ± 0.4	155.5 ± 0.5	159 ± 3
0.200	62 ± 4	85.5 ± 0.4	102.2 ± 0.9	92 ± 3
0.300	18.0 ± 0.3	29.0 ± 0.7	40.0 ± 0.6	35 ± 3

Figure S4. Transient of current for CO displacement at (a1-d1) 100, (a2-d2) 200, and (a3-d3) 300 mV for (a) Pt(100), (b) $Pt_{99}Pd_{01}(100)$, (c) $Pt_{93}Pd_{07}(100)$, and (d) $Pt_{85}Pd_{15}(100)$ surface in 0.1 mol L⁻¹ HClO₄. The black and red curves are the results of experiments repeated on different days.

Table S2. Charge d	lensity measured	during the displacem	ent of CO experir	ments at 0.10, 0.20), or 0.30 V
on Pt(100) or PtPd((100) family.				

	Charge / μC cm ⁻²			
E VS. KIL / V	Pt(100)	$Pt_{99}Pd_{01}(100)$	Pt ₉₃ Pd ₀₇ (100)	$Pt_{85}Pd_{15}(100)$
0.100	202 ± 3	209 ± 3	171 ± 6	176 ± 6
0.200	186 ± 1	177 ± 2	123 ± 4	119 ± 3
0.300	135 ± 4	92 ± 6	47 ± 5	39.0 ± 0.5

Table S3. Supplemental information about CO oxidation on Pt(111) and PtPd(111) family.

	Integrated	Total charge at	Corrected	E _{peak} / V
SURFACE	Charge	$0.90 \text{ V} / \mu \text{C cm}^{-2}$	Charge	
	$/\mu C \text{ cm}^{-2}$		$/\mu C \text{ cm}^{-2}$	
Pt(111)	487 ± 6	166	321 ± 5	0.755 ± 0.005
$Pt_{97}Pd_{03}(111)$	485 ± 10	153	332 ± 10	0.761 ± 0.009
$Pt_{96}Pd_{04}(111)$	501 ± 5	159	342 ± 5	0.772 ± 0.005
$Pt_{88}Pd_{12}(111)$	486 ± 5	166	320 ± 5	0.764 ± 0.004

Table S4. Supplemental information about CO oxidation on Pt(100) and PtPd(100) family.

	Integrated	Total charge at	Corrected	E _{peak} / V
SURFACE	Charge	$0.85 \text{ V}/\mu\text{C cm}^{-2}$	Charge	

	/μC cm ⁻²		/μC cm ⁻²	
Pt(100)	490 ± 5	160	330 ± 5	0.738 ± 0.005
Pt ₉₉ Pd ₀₁ (100)	512 ± 8	166	346 ± 8	0.729 ± 0.007
Pt ₉₃ Pd ₀₇ (100)	455 ± 4	137	318 ± 4	0.722 ± 0.005
Pt ₈₅ Pd ₁₅ (100)	511 ± 11	155	356 ± 11	0.7904 ± 0008