Supplementary Information for

Shear-Controlled Composite Cathodes for All-Solid-State Batteries Combined Synergistically with Stereology-Driven Image Analysis

Hyeseong Jeong,^{ab} Heesu Hwang,^c Jeong-Won Cho,^c Dongwook Shin,^b Jong-Ho Lee,^a Sung Soo Shin,^{*d} Jin-Ha Hwang,^{*c} and Hyoungchul Kim^{*e}

 ^aEnergy Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
 ^bDivision of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
 ^cDepartment of Materials Science and Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
 ^dDepartment of Mechanical Engineering, Incheon National University, 199 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
 ^eDepartment of Mechanical and System Design Engineering, Hongik University, 94 Wausanro, Mapo-gu, Seoul 04066, Republic of Korea

*Corresponding authors. E-mail address: ssshin@inu.ac.kr (S.S. Shin), jhwang@hongik.ac.kr (J.-H. Hwang), hyoungchul@hongik.ac.kr (H. Kim)

P (MPa)

Fig. S1. Pore analysis of the as-fabricated composite cathode of free-to-uniaxial pressed cells (FUPCs). The graph illustrates porosity as a function of pressure (P), with the red colour indicating pore regions.

Fig. S2. Pore analysis of the as-fabricated composite cathode of roll-to-uniaxial pressed cells (RUPCs). The graph illustrates porosity as a function of thickness-to-gap (TG) ratio, with the red colour indicating pore regions.

Fig. S3. Fabrication process and electrochemical performance of a reference roll-to-roll pressed cells (RRPC). (a) Depiction of cell fabrication processes using roll-to-roll pressing techniques. (b) Initial specific charge-discharge curves of the various cell types (RUPC, FUPC, and RRPC) at 0.1C. (c) Specific discharge capacities of the various cell types over 40 cycles at 0.2C.

Fig. S4. Electrochemical impedance spectroscopy (EIS) analysis of FUPCs. Nyquist plot and distribution of relaxation times (DRT) curves for the FUPCs at (a) 1 cycle and (b) 40 cycles.

Fig. S5. EIS analysis of RUPCs. Nyquist plot and DRT curves for the RUPCs at (a) 1 cycle and (b) 40 cycles.

Fig. S6. Input and segmented images included the as-fabricated and after cycle states of FUPCs and RUPCs, and after a long-cycling test of RUPCs.

Fig. S7. Comparison of the degradation rates in this work with those of previously reported cells [wet-cast and sulfide-based solid electrolytes (SEs)].¹⁻¹¹ Open and solid symbols indicate cell-operating temperature of \geq 45 °C and around room temperature (25–30 °C), respectively.

Fig. S8. DRT curves of RUPCs under a long-cycling test.

Fig. S9. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) results of RUPCs. (a) SEM images of the electrolyte layer and electrolyte-anode interface on RUPCs showing the microstructural evolution for as-fabricated (top), after 240 (middle), and 520 (bottom) cycles. All scale bars correspond to 5 μ m. (b) XPS spectra of P_{2p} and S_{2p} elements of the electrolyte-anode interface for as-fabricated, 240-, and 520-cycled conditions. The XPS results showed significant growth of peaks (*e.g.*, PS_xO_y, P_{red}, -S⁰-, and S²⁻) representing the decomposition products for each material. The area ratio (AR_i, where *i* is P or S) of decomposition reactions is given by the grown decomposition product to that of the pristine constituent in element *i*.

Material	Phase fraction (%)				Interconnectivity			DPB density (μm^{-1})				
	CAM	SE	ECM	Pore	CAM	SE	ECM	Pore	CAM-ECM	SE-ECM	CAM-ECM	Others
Uncycled FUPCs	27.41	49.98	11.87	10.74	0.178	0.407	0.136	0.280	0.563	0.074	0.444	1.638
Uncycled RUPCs	27.53	55.12	9.98	7.36	0.200	0.422	0.133	0.246	0.616	0.062	0.414	1.252
40-cycled FUPCs	27.48	56.87	3.63	12.02	0.153	0.444	0.067	0.336	0.394	0.026	0.206	1.645
40-cycled RUPCs	31.90	52.25	4.24	11.58	0.191	0.436	0.083	0.290	0.469	0.047	0.304	1.407
240-cycled RUPCs	30.57	52.56	9.53	7.33	0.218	0.417	0.142	0.222	0.532	0.116	0.462	1.021
520-cycled RUPCs	26.74	52.38	12.69	6.66	0.192	0.384	0.168	0.257	0.330	0.102	0.338	1.074

Table S1. Quantitative parameters including phase fraction, interconnectivity, and double-phase boundary (DPB) density. CAM and ECM indicate cathode active material and electronic conductive material.

Matarial	Phase fraction (%)				
Waterial	CAM	SE	ECM		
Experimental value	35.76	58.87	5.36		
Uncycled FUPCs	30.68	55.99	13.33		
Uncycled RUPCs	29.70	59.50	10.80		
40-cycled FUPCs	31.25	64.66	4.09		
40-cycled RUPCs	36.09	59.16	4.75		
240-cycled RUPCs	33.01	56.74	10.25		
520-cycled RUPCs	29.08	57.08	13.83		
Average	31.64	58.86	9.51		

Table S2. Comparison of quantitative parameters with experimental values.

_

Ref.	Cell type	Total cycle number	C-rate	Temp. (°C)	Initial Discharge capacity (mAh g ⁻¹)	Final Discharge capacity (mAh g ⁻¹)	Retention (%)	Degradation rate per 100 cycles (%)
1	Coin	300	1C	60	67.28	29.60	44.00	18.67
1	Coin	300	1C	60	63.34	16.36	25.83	24.72
1	Coin	300	1C	60	60.00	19.70	32.83	22.39
1	Coin	300	1C	60	57.58	14.24	24.73	25.09
2	Coin	100	0.1C	R.T.	127.50	81.82	64.17	35.83
2	Coin	100	0.1C	R.T.	114.70	93.44	81.46	18.54
2	Coin	100	0.1C	R.T.	136.30	105.50	77.40	22.60
3	Coin	100	0.02C	25	124.18	21.43	17.26	82.74
4	Coin	100	0.02C	30	130.00	92.30	71.00	29.00
4	Coin	100	0.05C	30	96.08	51.88	54.00	46.00
5	Pouch	150	0.2C	30	153.00	111.39	72.80	18.13
5	Pouch	150	0.2C	30	121.00	74.78	61.80	25.47
6	Mold	500	0.5C	25	180.22	129.00	71.58	3.62
7	Mold	100	0.5C	25	61.00	52.92	86.75	13.25
7	Mold	100	0.5C	60	120.17	104.88	87.28	12.72
8	Mold	100	0.64C	25	162.35	147.90	91.10	8.90
8	Mold	100	0.64C	25	154.23	116.60	75.60	24.40
8	Mold	100	0.64C	25	134.68	116.90	86.80	13.20
8	Mold	100	0.64C	25	130.08	67.90	52.20	47.80
8	Mold	1000	0.64C	25	146.61	102.72	70.06	2.99
9	Mold	200	0.5C	30	160.00	149.12	93.20	3.40
10	Mold	100	0.2C	25	150.80	76.67	50.84	49.16
10	Mold	100	0.2C	25	148.33	124.89	84.20	15.80
10	Mold	100	0.2C	25	142.20	104.17	73.26	26.74
11	Mold	200	0.5C	60	189.69	136.58	72.00	14.00
11	Mold	105	0.5C	60	180.90	123.71	68.39	30.11
This work	Mold	520	0.2C	25	149.32	95.96	64.26	6.87

Table S3. Comparison of the electrochemical performance and degradation rate in this work with that of previously reported papers (wet-cast and sulfide-based SEs).

		FUPCs af	ter 1 cycle				
Pressure (MPa) —	226	283	339	396			
$R_{ m bulk}\left(\Omega ight)$	40.51	35.02	55.55	39.82			
$R_{ ext{I-1}}\left(\Omega ight)$	33.4	43.06	76.25	34.44			
CPE-T _{I-1} (Fs ^{α-1})	1.3882E-5	2.3473E-5	2.1577E-5	2.4211E-5			
CPE-P _{I-1} (α)	0.64735	0.56222	0.55027	0.576			
$C_{\text{I-1}}(\text{F})$	2.12E-7	1.09E-7	1.15E-7	1.30E-7			
$R_{ ext{I-2}}\left(\Omega ight)$	1136	810.2	642	908.2			
CPE-T _{I-2} (Fs ^{α-1})	1.67E-6	2.1278E-6	2.0935E-6	1.3924E-6			
CPE-P _{I-2} (α)	0.911	0.85994	0.85618	0.88255			
$C_{\text{I-2}}(\text{F})$	9.04E-7	7.55E-7	6.89E-7	5.73E-7			
	2560	2051	405.0	120			
$R_{\text{I-3}}(\Omega)$	356.8	385.1	407.3	430			
CPE-T _{I-3} (Fs ^{α-1})	1.13E-3	1.0739E-3	1.2183E-3	7.9396E-4			
CPE-P _{I-3} (α)	0.605	0.57405	0.55508	0.5749			
$C_{\text{I-3}}(\text{F})$	6.21E-4	5.58E-4	6.95E-4	3.59E-4			
Pressure (MPa) -	FUPCs after 40 cycles						
Tressure (IVIT a)	226	283	339	396			
$R_{ m bulk}\left(\Omega ight)$	45.86	44.04	64.27	39.86			
$R_{ ext{I-1}}(\Omega)$	43.82	50.33	90.53	34.44			
CPE-T _{I-1} (Fs ^{α-1})	2.5197E-5	1.2598E-5	1.3091E-5	2.4074 E-5			
CPE-P _{I-1} (α)	0.56901	0.62084	0.59557	0.5829			
$C_{\text{I-1}}(\text{F})$	1.45E-7	1.40E-7	1.35E-7	1.50E-7			
	2450	2016	1726	1712			
$K_{\text{I-2}}(\Omega)$	2459	2016	1/20	1/13			
$CPE-I_{I-2} (Fs^{\alpha - 1})$	1.3/2E=6	1.3933E-6	1.314E-6	1.0964E-6			
CPE-P _{I-2} (α)	0.90904	0.88565	0.89398	0.89515			
$C_{\text{I-2}}(\mathbf{F})$	/./6E-/	6.53E-7	6.38E-/	5.26E-/			
$P_{\rm rel}(\Omega)$	171 8	418.0	127.6	161 7			
$\frac{\mathbf{\Lambda}_{1-3} (22)}{\mathbf{CDE} \mathbf{T}_{1-3} (\mathbf{E}_{\alpha} \alpha^{-1})}$	+71.0 1 1522E-2	+10.7 5 0/5E-/	+2/.0	401.7 1 1648E_4			
CDE D (-1)	1.1322E ⁻³	$3.043E^{-4}$	0.7274E ⁻ 4	4.1040E-4			
$CPE-P_{I-3}(\alpha)$	0.54421	0.00839	0.5/069	0.04830			
C _{I-3} (F)	6.92E-4	2.33E-4	2./8E-4	1./0E-4			

Table S4. Individual fitting component (*R*, CPE-T, CPE-P, and *C*) values obtained from EIS curves by conventional fitting method of FUPCs after 1 and 40 cycles.

TO	RUPCs after 1 cycle						
1 G ratio —	1.09	1.33	1.71	2.40			
$R_{ m bulk}\left(\Omega ight)$	34.64	65.71	43.09	47.87			
$R_{ ext{I-1}}\left(\Omega ight)$	197.5	201.7	199.6	200.4			
CPE-T _{I-1} (Fs ^{α-1})	2.98E-5	6.37E-5	2.10E-5	1.55E-5			
CPE-P _{I-1} (α)	0.58904	0.50136	0.61899	0.63206			
$C_{\text{I-1}}(\text{F})$	8.30E-07	8.37E-07	7.22E-07	5.36E-07			
D (O)	220.0	210.1	210.0				
$K_{\text{I-2}}(\Omega)$	228.9	219.1	310.8	677.8			
$CPE-T_{I-2} (FS^{\alpha - 1})$	8.72E-6	7.47E-6	9.30E-6	4.50E-6			
$CPE-P_{I-2}(\alpha)$	0.8847	0.84479	0.83328	0.88516			
$C_{\text{I-2}}(\text{F})$	3.88E-06	2.30E-06	2.89E-06	2.12E-06			
$R_{\rm L2}(\rm O)$	126 1	110.2	100 5	151			
CPE $T_{r,a}$ (Es ^{α-1})	120.1	119.5 2.04E_2	109.5	102E 2			
$CDE D (\alpha)$	1.11E-3	2.94E-3	1.48E-3	1.03E-3			
$CrE-r_{1-3}(\alpha)$	0.84937	0.66914	0.86853	0.88648			
C _{I-3} (F)	7.87E-04	1.75E-03	1.12E-03	8.08E-04			
TG ratio —	1.00	RUPCs afte	er 40 cycles	2.40			
P(Q)	1.09	1.33	1.71	2.40			
$R_{ m bulk}(\Omega)$	39.27	65.65	51.1	55.85			
$R_{\rm L1}$ (O)	108.0	212.5	205 7	202.9			
$CPE-T_{r,1}(Es^{\alpha-1})$	198.9 185E-5	212.5 2 10E_5	203.7 1 34E-5	1 56E-5			
$CPE_{PI}(\alpha)$	0.61077	0.50199	0.646	0.61142			
$C_{\rm LL}({\rm E})$	0.01077 5 10E_7	0.39188 5 29E_7	5.21E_7	0.01142			
CI-1 (I)	5.191-7	5.56L-7	5.51L ⁻ /	4.02L ⁻ /			
$R_{ ext{I-2}}\left(\Omega ight)$	1005	572.9	910.1	1257			
CPE-T _{I-2} (Fs ^{α-1})	3.94E-6	7.18E-6	6.32E-6	3.12E-6			
CPE-P _{I-2} (α)	0.92525	0.86795	0.853	0.90741			
$C_{\text{I-2}}(\text{F})$	2.52E-6	3.11E-6	2.61E-6	1.77E-6			
× /	v						
$R_{ ext{I-3}}\left(\Omega ight)$	147.4	132.2	124.9	188.6			
CPE-T _{I-3} (Fs ^{α-1})	8.12E-4	2.89E-3	2.09E-3	7.41E-4			
CPE-P _{I-3} (α)	0.83444	0.64732	0.891	0.75471			
$C_{I-3}(F)$	5.33E-4	1.71E-3	1.77E-3	3.91E-4			

Table S5. Individual fitting component values obtained from EIS curves by conventional fitting method of RUPCs after 1 and 40 cycles

Cuele number		RUPCs under a	long-cycling test	
Cycle number —	1	160	320	480
$R_{ m bulk}\left(\Omega ight)$	30.23	94.84	144.3	193.4
$R_{ ext{I-1}}\left(\Omega ight)$	12.54	37.97	50.08	65.71
CPE-T _{I-1} (Fs ^{α-1})	3.31E-5	1.86E-5	1.21E-5	1.07E-5
CPE-P _{I-1} (α)	0.6904	0.66816	0.68598	0.6823
$C_{\text{I-1}}(\text{F})$	1.01E-6	5.06E-7	4.09E-7	3.62E-7
$R_{ ext{I-2}}\left(\Omega ight)$	139.2	518.3	508.7	608.4
CPE-T _{I-2} (Fs ^{α-1})	1.92E-5	8.75E-6	1.03E-5	1.03E-5
CPE-P _{I-2} (α)	0.85154	0.8735	0.83795	0.82279
$C_{\text{I-2}}(\text{F})$	6.84E-6	4.00E-6	3.72E-6	3.45E-6
$R_{ ext{I-3}}(\Omega)$	86.16	125.8	118.3	151.5
CPE-T _{I-3} (Fs ^{α-1})	1.67E-3	1.36E-3	1.96E-3	1.94E-3
CPE-P _{I-3} (α)	0.54071	0.69945	0.70367	0.69958
$C_{\text{I-3}}(\text{F})$	3.21E-4	6.39E-4	1.06E-3	1.15E-3

Table S6. Individual fitting component values obtained from EIS curves by conventional fitting method of RUPCs under a long-cycling test.

	FUPCs after 1 cycle						
Pressure (MPa) —	226	283	339	396			
$R_{ m bulk}\left(\Omega ight)$	40.51	35.02	55.55	39.82			
$R_{ ext{I-1}}\left(\Omega ight)$	27.85	335.39	364.79	436.63			
$R_{ ext{I-2}}\left(\Omega ight)$	1463.27	728.36	564.23	904.87			
$R_{ ext{I-3}}\left(\Omega ight)$	35.08	174.61	196.54	31.14			
	FUPCs after 40 cycles						
Pressure (MPa) —	226	283	339	396			
$R_{ m bulk}\left(\Omega ight)$	45.86	44.04	64.27	39.86			
$R_{ ext{I-1}}\left(\Omega ight)$	463.29	443.91	440.31	464.23			
$R_{ ext{I-2}}\left(\Omega ight)$	2454.30	1982.69	1737.72	1698.35			
$R_{ ext{I-3}}\left(\Omega ight)$	57.03	58.63	66.10	46.56			
TC /		RUPCs af	ter 1 cycle				
IG ratio —	1.09	1.33	1.71	2.40			
$R_{ m bulk}\left(\Omega ight)$	34.64	65.71	43.09	47.87			
$R_{ ext{I-1}}\left(\Omega ight)$	123.76	112.61	119.40	161.96			
$R_{ ext{I-2}}\left(\Omega ight)$	202.39	189.81	252.80	698.12			
$R_{ ext{I-3}}\left(\Omega ight)$	226.35	237.68	247.70	169.12			
	RUPCs after 40 cycles						
IG ratio —	1.09	1.33	1.71	2.40			
$R_{ m bulk}\left(\Omega ight)$	39.27	65.65	51.1	55.85			
$R_{ ext{I-1}}\left(\Omega ight)$	138.31	156.69	144.41	187.46			
$R_{ ext{I-2}}\left(\Omega ight)$	1063.01	555.49	877.16	1291.85			
$R_{ ext{I-3}}\left(\Omega ight)$	149.98	205.42	219.13	169.19			
C 1 m l	RUPCs under a long-cycling test						
Cycle number —	1	160	320	480			
$R_{ m bulk}\left(\Omega ight)$	30.23	94.84	144.3	193.4			
$R_{ ext{I-1}}\left(\Omega ight)$	91.89	129.46	137.55	179.41			
$R_{ ext{I-2}}\left(\Omega ight)$	124.17	497.92	458.97	536.27			
$R_{ ext{I-3}}\left(\Omega ight)$	21.84	54.68	80.56	109.93			

Table S7. Detailed Resistance values obtained from DRT method in FUPCs and RUPCs.

References

- J. Zhang, H. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y. Gan, X. Tao, and W. Zhang, J. Power Sources, 2018, 391, 73–79.
- Q. Ye, X. Li, W. Zhang, Y. Xia, X. He, H. Huang, Y. Gan, X. Xia, and J. Zhang, ACS Appl. Mater. Interfaces, 2023, 15, 18878–18888.
- S. Choi, M. Jeon, J. Ahn, W. D. Jung, S. M. Choi, J. -S. Kim, J. Lim, Y. -J. Jang, H. -G. Jung, J. -H. Lee, B. -I. Sang, and H. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 23740–23747.
- 4. Y. Xia, J. Li, Z. Xiao, X. Zhou, J. Zhang, H. Huang, Y. Gan, X. He, and W. Zhang, *ACS Appl. Mater. Interfaces*, 2022, **14**, 33361–33369.
- T. Y. Kwon, K. T. Kim, D. Y. Oh, Y. B. Song, S. Jun, and Y. S. Jung, *Energy Stor. Mater.*, 2022, 49, 219–226.
- S. Jing, H. Shen, Y. Huang, W. Kuang, Z. Zhang, S. Liu, S. Yin, Y. Lai, and F. Liu, *Adv. Funct. Mater.*, 2023, **33**, 2214274.
- D. Lee, Y. Shim, Y. Kim, G. Kwon, S. H. Choi, K. Kim, and D. -J. Yoo, *Nat. Commun.*, 2024, 15, 4763.
- J. Gao, J. Hao, Y. Gao, X. Sun, Y. Zhang, D. Song, Q. Zhao, F. Zhao, W. Si, K. Wang, T. Ohsaka, F. Matsumoto, J. Wu, and H. Xie, *eTransportation*, 2023, 17, 100252.
- K. T. Kim, T. Y. Kwon, Y. B. Song, S. -M. Kim, S. C. Byun, H. -S. Min, S. H. Kim, and Y. S. Jung, *J. Chem. Eng.*, 2022, 450, 138047.
- 10. Y.-J. Lee, S.-B. Hong, and D.-W. Kim, J. Ind. Eng. Chem., 2023, 122, 341–348.
- S. -B. Hong, Y. -R. Jang, Y. -C. Jung, W. Cho, and D. -W. Kim, *ACS Appl. Energy Mater.*, 2024, 7, 5193–5201.