A supramolecular cascade assembly with a two-step sequential energy transfer process for enhanced photocatalytic performance

Guang-Lu Li, Kai-Kai Niu, Xuan-Zong Yang, Hui Liu, Shengsheng Yu* and Ling-Bao Xing*
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000,
Shandong Province, P. R. China
*Corresponding author: Tel./fax: +86 533 2781664. E-mail: ssyu@sdut.edu.cn; lbxing@sdut.edu.cn.

Experimental

Materials: Unless specifically mentioned, all chemicals are commercially available and were used as received.

Characterizations

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 spectrometer $(400 \mathrm{MHz})$ at 298 K , and the chemical shifts (δ) were expressed in ppm, and J values were given in Hz. UV-vis spectra were obtained on a Shimadzu UV-1601PC spectrophotometer in a quartz cell (light path 10 mm) at 298 K. Steady-state fluorescence measurements were carried out using the FLS5 SteadyState/Transient Fluorescence Spectrometer. Dynamic light scattering (DLS) and zeta potential are measured on Malvern Zetasizer Nano ZS90. Transmission electron microscopy (TEM) images were obtained on a JEM 2100 operating at 120 kV . Samples for TEM measurement was prepared by dropping the mixed aqueous solution on a carbon-coated copper grid (300 mesh) and drying by slow evaporation. Hamamatsu absolute quantum yield measuring instrument Quantaurus-QY was used to obtain fluorescence quantum yields. The time-resolved fluorescence decay curve was obtained by the FLS5 Steady-State/Transient Fluorescence Spectrometer. Photoluminescence spectra was recorded by FLS5 equipped.

Energy-transfer efficiency calculation

The energy-transfer efficiency (Φ_{ET}) was calculated from excitation fluorescence spectra through the equation S :

$$
\Phi_{\mathrm{ET}}=1-\mathrm{I}_{\mathrm{DA}} / \mathrm{I}_{\mathrm{D}}(\mathrm{~S} 1)
$$

Where $I_{D A}$ and I_{D} are the fluorescence intensities of the emission of PATT-CB[7]-SBE- $\beta-C D+E Y$ or PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$ (acceptor), and PATT-CB[7]-SBE- $\beta-\mathrm{CD}$ or PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}$ (donor) respectively, when excited at 313 nm . The energy-transfer efficiency $\left(\Phi_{\mathrm{ET}}\right)$ was calculated as 14% and 20% in an aqueous environment, measured under the condition of [PATT] $=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{EY}=7.5 \times 10^{-7}$ $\mathrm{mol} / \mathrm{L}, \mathrm{SR} 101=1.1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$.

Antenna effect calculation

The Antenna effect was calculated based on the excitation spectra using equation S2:

$$
\text { Antenna effect }=\left(\mathrm{I}_{\mathrm{DA}, 313}-\mathrm{I}_{\mathrm{D}, 313}\right) / \mathrm{I}_{\mathrm{DA}, 516 / 580}(\mathrm{~S} 2)
$$

Where $I_{D A}$ and I_{D} are the fluorescence intensities of the emission of PATT-CB[7]-SBE- $\beta-C D+E Y$,
or PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$ (acceptor) and PATT-CB[7]-SBE- $\beta-\mathrm{CD}$ or PATT-CB[7]-SBE- $\beta-C D+E Y$ (donor) respectively, when excited at 313 nm . The antenna effect value was calculated as 10.3 and 11.4 in water, measured under the condition of $[P A T T]=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$, $\mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{EY}=7.5 \times 10^{-7} \mathrm{~mol} / \mathrm{L}, \mathrm{SR} 101=1.1 \times$ $10^{-6} \mathrm{~mol} / \mathrm{L}$.

General procedure for the aerobic oxidation reaction of N-phenyltetrahydroisoquinoline:

The N-phenyltetrahydroisoquinoline or its derivatives $(0.20 \mathrm{mmol})$ was added in the newly produced solution of PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$ ($0.6 \mathrm{~mol} \%$). The mixture was irradiated with 360-365 nm LED (10 W) at room temperature for 36 h . Then, the mixture was extracted with dichloromethane and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solution was concentrated in a vacuum and purified by rapid column chromatography to obtain the corresponding products.

General procedure for photooxidation reactions of benzylamine:

The benzylamine (0.20 mmol) was added in the newly produced solution of PATT-CB[7]-SBE-$\beta-C D+E Y+S R 101$ ($1 \mathrm{~mol} \%$). The mixture was irradiated with $360-365 \mathrm{~nm}$ LED (10 W) at room temperature for 24 h . Then, the mixture was extracted with ethyl acetate and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solution was concentrated in a vacuum and purified by rapid column chromatography to obtain the corresponding products.

Scheme S1 Synthetic route of PATT.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectra of PATT in DMSO- d_{6}.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectra of PATT in DMSO- d_{6}.

Fig. S3 UV-vis absorption spectra of PATT with the addition of $\mathrm{CB}[7]\left([\mathrm{PATT}]=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right.$, $\left.\mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S4 The Job's plot of PATT and CB[7] system in the aqueous solution.

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectra of PATT in the presence of 4.0 equiv. $\mathrm{CB}[7]$ in $\mathrm{D}_{2} \mathrm{O}\left([P A T T]=1.0 \times 10^{-5}\right.$ $\left.\mathrm{mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{PATT}]+[\mathrm{CB}[7]]=1.0 \times 10^{-5} \mathrm{M}\right)$

Fig. S6 Time-resolved fluorescence decay curves of PATT and PATT-CB[7] ([PATT] $=1.0 \times 10^{-5}$ $\left.\mathrm{mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S7 UV-vis absorption spectra of PATT-CB[7]with the addition of SBE- $\beta-\mathrm{CD}([$ PATT $]=1.0 \times$ $\left.10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S8 ${ }^{1} \mathrm{H}$ NMR spectra of PATT-CB[7] in the presence of 1.6 equiv. SBE- $\beta-\mathrm{CD}$ in $\mathrm{D}_{2} \mathrm{O}$ ([PATT] $=$ $\left.1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S9 Time-resolved fluorescence decay curves of PATT-CB[7] and PATT-CB[7]-SBE- $\beta-\mathrm{CD}$ $\left([\mathrm{PATT}]=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S10 Zeta potential of (a) PATT, (b) PATT-CB[7], and (c) PATT-CB[7]-SBE- $\beta-\mathrm{CD}$ ([PATT] = $\left.1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S11 Fluorescence emission spectra of PATT-CB[7]-SBE- β-CD and UV-vis absorption spectra of EY.

Fig. S12 CIE chromaticity coordinates of PATT-CB[7]-SBE- $\beta-$ CD at different concentrations of EY (from 0 to 0.05 equiv.) $\left([\mathrm{PATT}]=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6\right.$ $\left.\times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S13 (a) Fluorescence emission spectra of PATT-CB[7]-SBE- β-CD and PATT-CB[7]-SBE- β CD+EY; (b) Fluorescence emission spectra of PATT-CB[7]-SBE- $\beta-C D+E Y$ (the red line), PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}$ (the blue line), PATT-CB[7]-SBE- $\beta-\mathrm{CD}$ (the black line) $\left([\mathrm{PATT}]=1.0 \times 10^{-5}\right.$ $\left.\mathrm{mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{EY}=5.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S14 Fluorescence emission spectra of PATT-CB[7]-SBE- $\beta-C D+E Y$ and UV-vis absorption spectra of SR101.

Fig. S15 CIE chromaticity coordinates of PATT-CB[7]-SBE- $\beta-C D+E Y$ at different concentrations of SR101 (from 0 to 0.07 equiv.) ([PATT] $=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[$ SBE- $\beta-$ $\left.\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{EY}=5.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S16 (a) Fluorescence emission spectra of PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}$ and D PATT-CB[7]-SBE- $\beta-$ CD + EY + SR101; (b) Fluorescence emission spectra of PATT-CB[7]-SBE- $\beta-C D$ $+\mathrm{EY}+\mathrm{SR} 101$ (the red line), PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$ (the blue line), PATT-CB[7]-SBE-$\beta-\mathrm{CD}+\mathrm{EY}($ the black line $)\left([\mathrm{PATT}]=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=\right.$ $\left.1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{EY}=5.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}, \mathrm{SR} 101=7.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right)$.

Fig. S17 DLS of (a) PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}$ and (b) PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$ $\left([\right.$ PATT $]=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{CB}[7]=4.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L},[\mathrm{SBE}-\beta-\mathrm{CD}]=1.6 \times 10^{-5} \mathrm{~mol} / \mathrm{L}, \mathrm{EY}=5.0$ $\left.\times 10^{-7} \mathrm{~mol} / \mathrm{L}, \mathrm{SR} 101=7.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right)$.

$\stackrel{\underset{i}{\mid}}{\stackrel{\rightharpoonup}{7}}$

Fig. S18 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}$ in CDCl_{3}.

Fig. $\mathbf{S 1 9}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 b}$ in CDCl_{3}.

Fig. $\mathbf{S 2 0}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$ in CDCl_{3}.

Fig. S21 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 d}$ in CDCl_{3}.

$\stackrel{\pi}{1}$
$\stackrel{\infty}{\stackrel{\infty}{i}}$

Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 e}$ in CDCl_{3}.

Fig. $\mathbf{S 2 3}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 f}$ in CDCl_{3}.

Fig. $\mathbf{S 2 4}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 g}$ in CDCl_{3}.

Fig. $\mathbf{S 2 5}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 h}$ in CDCl_{3}.

Fig. S26 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 i}$ in CDCl_{3}.

ल্লু

Fig. $\mathbf{S} 27{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 j}$ in CDCl_{3}.

Fig. S28 The fluorescence spectra of DCFH $(20 \mu \mathrm{M})$ after irradiation $(360-365 \mathrm{~nm})$ for different time in the presence of (a) PATT, (b) PATT-CB[7], (c) PATT-CB[7]-SBE- $\beta-\mathrm{CD}$, (d) PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}$, (e) PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$; (f) Plots of $\Delta \mathrm{F}\left(\mathrm{F}-\mathrm{F}_{0}\right)$ of DCFH at fluorescence emission maxima upon light irradiation (365 nm) for different time intervals in the presence of PATT, PATT-CB[7], PATT-CB[7]-SBE- $\beta-C D$, PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}$, PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101$.

Fig. S29 EPR spectra of $\mathrm{O}_{2}{ }^{--}$captured with DMPO as the trapping agent.

Fig. S30 The mechanism of TMPD as the $\mathrm{O}_{2}{ }^{--}$indicator.

Table S1 photooxidative coupling reaction of benzylamine. ${ }^{a, b}$

Entry	Variation from standard conditions ${ }^{\text {a }}$	Yield $^{\mathrm{b}}[\%]$
1	Standard condition	87
2	PATT-CB[7]	38
3	PATT-CB[7]-SBE- $\beta-C D$	46
4	PATT-CB[7]-SBE- $\beta-C D+E Y$	63

${ }^{a}$ Standard conditions: benzylamine (0.2 mmol), PATT-CB[7]-SBE- $\beta-\mathrm{CD}+\mathrm{EY}+\mathrm{SR} 101(1 \mathrm{~mol} \%)$,
$\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$, DIPEA (0.5 mmol), 360-365 nm LED, room temperature, 24 h ; ${ }^{b}$ Isolated yield.

Fig. S31 ${ }^{1} \mathrm{H}$ NMR spectra of \boldsymbol{N}-benzyl-1-phenylmethanimine in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR data of $\mathbf{2 a - 2} \mathbf{j}$

2a. 2-Phenyl-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{q}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$.

2b. 2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{m}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 6 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H})$.

2c. 2-(4-methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.93(\mathrm{dd}, J=7.0,6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86-3.83(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$.

2d. 2-(4-fluorophenyl)-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2e. 2-(4-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H})$, 7.27-7.19 (m, 1H), $3.92(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2f. 2-(4-bromonaphthalen)-3,4-dihydroisoquinolin-1(2H)-one

1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{dd}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.24(\mathrm{~m}, 9 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 2 \mathrm{H})$, $3.15(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2g. 2-(p-nitrobenzene)-1,2,3,4-tetrahydroisoquinoline

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7$
$\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2h. 2-(4-chloro-3-methylphenyl)-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.17(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=7.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H})$.

2i. 2-(naphthalen-1-yl)-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=$ $7.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2j. 2-(4-bromonaphthalen-1-yl)-3,4-dihydroisoquinolin-1(2H)-one

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.81$ (m, 2H), 7.75-7.49 (m, 3H), 7.47-7.28 (m, 3H), 4.07 (ddd, $J=12.3,10.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J$ $=11.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=15.8,10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=15.9,5.2 \mathrm{~Hz}, 1 \mathrm{H})$.

N-benzyl-1-phenylmethanimine

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32-8.31(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}$, $3 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H})$.

