1 Electronic Supplementary Information (ESI)

2 Ruthenium supported on zirconia-carbon nanocomposites derived by

3 UiO-66 for efficient photothermal catalytic CO₂ reduction

- 4 Huiling wang ^{a,b,c}, Qiang Li ^{b,c,e}, Jing Chen ^{d,e,*} and Hongpeng Jia ^{b,c,e,*}
- 5 a College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian
- 6 Agriculture and Forestry University, Fuzhou 350002, China
- 7 ^b Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban
- 8 Environment, Chinese Academy of Sciences, Xiamen 361021, China
- 9 ° Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment,
- 10 Chinese Academy of Sciences, Xiamen 361021, China
- 11 d Fujian Institute of Research on The Structure of Matter, Chinese Academy of
- 12 Sciences, Fuzhou 350002, China
- 13 ^e University of Chinese Academy of Sciences, Beijing 100049, China
- 14 * Corresponding authors
- 15 E-mail addresses: jing.chen@fjirsm.ac.cn & hpjia@iue.ac.cn
- 16 Tel: 86-592-6190767; Fax: 86-592-6190767
- 17

Contents This file contains 10 figures and 2 tables. Supplementary Materials Include: Fig.S1 the images of ZrO₂, ZrO₂/C, Ru/ZrO₂, and Ru-ZrO₂/C......3 Fig. S5 Thermogravimetry analysis and derivative thermogravimetry (TGA-DTG) curve of Ru-ZrO₂/C.....7 Fig.S6 The production rate in the initial second hour of Ru-ZrO₂/C with different Ru Fig.S7 (a) Continuous stability test of photothermal CO₂ reduction over Ru-ZrO₂/C under the light intensity of 2858 mW cm⁻² for 24 h. (b) The catalytic durability for CO₂ reduction over Ru-ZrO₂/C under the light intensity of 2858 mW cm⁻², lasting within at least 24 h (each cycle for 4 h, 6 cycles)......9 Fig. S8 (a) photocurrent test of Ru/ZrO₂ and Ru-ZrO₂/C; (b) EIS Nyquist plots under irradiation of Ru/ZrO₂ and Ru-ZrO₂/C.....10 Fig. S9 XRD patterns of Ru-ZrO₂/C and Ru-ZrO₂/C-3h.....11 Fig. S10 Ru 3p and O 1s of the Ru/ZrO₂.....12 Table S1 Catalytic activity for CH₄ production via photo-thermal route in the reported Table S2 Vibrational wavenumbers were measured in this work and collected from

- 2 Fig. S1 the images of ZrO_2 , ZrO_2/C , Ru/ZrO_2 , and $Ru-ZrO_2/C$.

2 Fig. S2 XRD patterns of xRu-ZrO₂/C with different Ru loading amounts, ZrO₂ represents JCPDS

3 PDF # 96-210-038, and Ru represents JCPDS PDF # 96-900-8514.

- 2 Fig. S3 SEM and HRTEM images. (a-b) TEM images of ZrO₂/C and ZrO₂; (c-d) HRTEM images
- 3 of ZrO_2/C and ZrO_2 , respectively.

2 Fig. S4 (a) Production rate of ZrO₂/C with a continuous flow of 10 vol.% CO₂, 40 vol.% H₂, and
3 50 vol.% He (25 mL/min); (b) Production rate of Ru-ZrO₂/C with a continuous flow of 5% vol.%

4 H₂ and 95% vol.% Ar (25 mL/min). Reaction condition: the samples were irradiated under full-

5 spectrum irradiation with light intensities (2614 mW cm⁻²).

- 6
- 7

2 Fig. S5 Thermogravimetry analysis and derivative thermogravimetry (TGA-DTG) curve of

3 Ru- ZrO_2/C

3 Fig. S6 The production rate in the initial second hours of Ru-ZrO₂/C with different Ru loading

⁴ amounts at the light intensity of 2614 mW cm⁻².

Fig. S7 (a) Continuous stability test of photothermal CO₂ reduction over Ru-ZrO₂/C under the light
intensity of 2858 mW cm⁻² for 24 h. (b) The catalytic durability for CO₂ reduction over Ru-ZrO₂/C
under the light intensity of 2858 mW cm⁻², lasting within at least 24 h (each cycle for 4 h, 6 cycles)

2 Fig. S8 (a) photocurrent test of Ru/ZrO₂ and Ru-ZrO₂/C; (b) EIS Nyquist plots under irradiation of

- 3 Ru/ZrO₂ and Ru-ZrO₂/C
- 4
- 5

2 Fig. S9 XRD patterns of Ru-ZrO₂/C and Ru-ZrO₂/C-3h, ZrO₂ represents JCPDS PDF # 96-210-

- 3 038.

1 T	able S1	Catalytic	activity for	CH ₄ production	via photo-thermal	route in the reported
------------	---------	-----------	--------------	----------------------------	-------------------	-----------------------

2 literature

Catalusta	Surface	CH ₄ production	Literature	
Catalysis	temperature (°C)	(mmol g _{cat} ⁻¹ h ⁻¹)		
Ru-ZrO ₂ /C	370	504.1	This work	
Ru/CeO ₂	365	16.8	Ref. ¹	
Ru/MnO-MgCO ₃	400	50.7	Ref. ²	
$Ru@Ni_2V_2O_7$	350	114.9	Ref. ³	
Ru@FL-LDH	350	277.0	Ref. ⁴	
Ru/pBN-1.76%F	400	115.7	Ref. ⁵	
$3Ru/CeO_2$	350	227.7	Ref. ⁶	
5%Ru/Al ₂ O ₃	400	271.0	Ref. ⁷	
5%Ru/CeO ₂	400	147.0	Ref. ⁷	
12Co/MnO	420	121.4	Ref. ⁸	
Ru/Al ₂ O ₃ -B	350	34.3	Ref. ⁹	
Ni@CeO ₂	420	257.4	Ref. ¹⁰	

1 Ta	ble S2 Vibrational	wavenumbers	were measured	in this	work and	collected from
-------------	--------------------	-------------	---------------	---------	----------	----------------

2 the literature.

Position (cm ⁻¹)	corresponding	Literature
1230	HCOO*	Ref. ¹¹
1513,1547,1581	b-CO ₃ ²⁻	Ref. ¹²
1641	CH_3O^-	Ref. ^{13, 14}
1900-2100	СО	Ref. ^{15, 16}
1305,3016	CH_4	Ref. ^{17, 11}

1 **Reference**

- 2 1. T. Zhang, P. Zhang, F. Gu, W. Xu, W. Chen, T. Zhu, Y. Han, G. Xu, Z. Zhong and F. Su, Appl.
- 3 *Catal., B.,* 2023, **323**, 122190.
- 4 2. Q. Wang, Y. Gao, C. Tumurbaatar, T. Bold, F. Wei, Y. Dai and Y. Yang, *J. Energy Chem.*, 2022,
 5 64, 38-46.
- 6 3. Y. Chen, Y. Zhang, G. Fan, L. Song, G. Jia, H. Huang, S. Ouyang, J. Ye, Z. Li and Z. Zou, *Joule*,
 7 2021, 5, 3235-3251.
- 8 4. J. Ren, S. Ouyang, H. Xu, X. Meng, T. Wang, D. Wang and J. Ye, *Adv. Energy Mater.*, 2017, 7,
 9 1601657.
- 10 5. M. Fan, J. Jimenez, S. Shirodkar, J. Wu, S. Chen, L. Song, M. Royko, J. Zhang, H. Guo, J. Cui,
- 11 K. Zuo, W. Wang, C. Zhang, F. Yuan, R. Vajtai, J. Qian, J. Yang, B. Yakobson, J. Tour, J.
- 12 Lauterbach and P. Ajayan, ACS Catal., 2019, 9, 10077-10086.
- 13 6. S. L'opez-Rodríguez, A. Dav'o-Qui^{*}nonero, E. Bail'on-García, D. Lozano-Castell'o and A.
- 14 Bueno-L'opez, Mol. Catal., 2021, 515, 111911.
- 15 7. M. Hatzisymeon, A. Petala and P. Panagiotopoulou, Catal. Lett., 2020, 151, 888-900.
- 16 8. S. Miao, S. Chen, J. Zeng, Z. Gou, C. Huang, X. Wang and G. Zhou, Fuel, 2024, 362, 130853.
- 17 9. W. Wang, J. Zhang, G. Fan and F. Li, *Energy Fuels*, 2023, 37, 8386-8397.
- 18 10. J. Ma, T. Liu, G. Chen, S. Liu, W. Gong, Y. Bai, H. Liu, Y. Wang, D. Liu, R. Long, Y. Li and
- 19 Y. Xiong, Appl. Catal., B., 2024, 344, 123600.
- 20 11. X. Zu, Y. Zhao, X. Li, R. Chen, W. Shao, Z. Wang, J. Hu, J. Zhu, Y. Pan, Y. Sun and Y. Xie,
- 21 Angew. Chem. Int. Ed., 2021, 60, 13840-13846.
- 22 12. A. Li, Q. Cao, G. Zhou, B. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong and M. Antonietti,
- 23 Angew. Chem. Int. Ed., 2019, 131, 14691-14697.
- 24 13. S.Cai, M. Zhang, J. Li, J. Chen and H. Jia, Solar RRL, 2020, 5, 2000313.
- 25 14. X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, J. Zhu and Y. Xie, *Nat. Energy*, 2019, 4,
 26 690–699.
- 27 15. N. Ruia, X. Zhang, F. Zhang, Z. Liu, X. Cao, Z. Xie, R. Zou, S. Senanayakeb, Y. Yang, J.
- 28 Rodriguez and C. Liu, Appl. Catal., B., 2021, 282, 119581.
- 29 16. X. Jia, X. Zhang, N. Rui, X. Hu and C. Liu, Appl. Catal., B., 2019, 244, 159-169.

- 1 17. T. Yan, L. Wang, Y. Liang, M. Makaremi, T. Wood, Y. Dai, B. Huang, F. Ali, Y. Dong and G.
- 2 Ozin, Nat. Commun., 2019, 10, 2521.
- 3