Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

g-C₃N₄/rGO/Cs₃Bi₂Br₉ mediated Z-scheme heterojunction for enhanced photocatalytic CO₂ reduction

Yasmine Baghdadi^a, Matyas Daboczi^a, Filipp Temerov^{a, b}, Mengya Yang^a, Junyi Cui^a, Salvador Eslava^{*a}

^a Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.

^b Nano and molecular system (NANOMO) research unit, University of Oulu, Oulu 90570, Finland.

E-mail: s.eslava@imperial.ac.uk

Apparent quantum yield calculations

To measure the apparent quantum yield (AQE), the sample was tested in the same experimental setup using the same conditions while replacing the 300 W Xe lamp with a 365 nm monochromatic LED lamp. To perform the calculations, the following parameters were used:

Irradiance, Area of effective light irradiation, Plank's constant, Speed of light, Avogadro's number, $I = 100 \text{ mW cm}^{-2} = 1000 \text{ W m}^{-2}$ $A = 8x10^{-4} \text{ m}^2$ $A = 6.626x10^{-34} \text{ J s}$ $= 3x10^{17} \text{ nm s}^{-1}$ $\lambda = 365 \text{ nm}$ $N_A = 6.022x10^{23} \text{ mol}^{-1}$

Incident light intensity, $({}^{I}_{0}) = IxA$

Photon energy, ${}^{(E_p)} = \frac{hc}{\lambda} = \frac{(6.626x10^{-34} J s)x(3x10^{17} nm s^{-1})}{365 nm}$

Therefore, the number of incident photons per unit time (N_p) can be calculated as:

$$N_P = \frac{I_0}{E_P}$$

The number of moles of incident photons per unit time $({}^{M_{P}})$ can be calculated by dividing ${}^{N_{P}}$ by ${}^{N_{A}}$ such that:

$$M_P = \frac{N_P}{N_A}$$

Finally, AQE is calculated by dividing the moles of reacted electrons by M_P such that:

$$AQE (\%) = \frac{2xH_{2produced} + 2xCO_{produced} + 8xCH_{4produced}}{M_{P}} x100$$

Supporting data

Figure S1: (a) X-ray diffractograms and (b) FT-IR spectra of BGCN (0 h) and EGCN (0.5, 2, 4 h) samples.

Figure S2: Production rates of the BGCN/rGO and EGCN/rGO samples for (a) H₂, (b) CO, and (c) CH₄. (d) Total production on an electron basis.

Figure S3: TEM micrographs of (a-b) BGCN and (c-d) 2EGCN.

Figure S4: Control tests performed on EGCN/rGO/CBB in the absence of (2) CO_2 , (3) CO_2 and H_2O , (4) the photocatalyst, and (5) light.

Figure S5: Mass chromatography spectra showing (a) fragmented peaks for m/z 28 and 29 with retention time and (a) relative intensity with respect to m/z ratio after conducting a 2 h batch reaction on EGCN/rGO/CBB using isotope labelled ¹³CO₂

Figure S6: (a) XRD diffractograms and (b) FT-IR spectra of EGCN/rGO/CBB sample before and after a 1 hr reaction.

Figure S7: XPS scans of (a) C 1s, (b) N 1s, (c) O 1s, (d) Cs 3d, (e) Bi 4f, (f) Br 3d for EGCN/rGO/CBB samples before and after a 1 hr reaction.

Figure S8: (a) Work function values of rGO, 2EGCN, and CBB from Kelvin probe measurements. (b) Cube root photoemission data extrapolated to gather valence band edge positions of 2EGCN and CBB.

	Production (umol g-1h-1)			
	H_2	CO	CH ₄	
BGCN	0.00 ± 0.00	2.06 ± 0.24	0.00 ± 0.00	
0.5EGCN	0.64 ± 0.16	1.45 ± 0.28	0.25 ± 0.06	
2EGCN	1.59 ± 0.50	1.83 ± 0.45	0.60 ± 0.12	
4EGCN	1.33 ± 0.42	1.61 ± 0.42	0.32 ± 0.03	
BGCN/1rGO	0.63 ± 0.29	5.24 ± 1.03	0.13 ± 0.05	
BGCN/2.5rGO	1.55 ± 0.21	7.90 ± 0.89	0.27 ± 0.05	
BGCN/5rGO	1.33 ± 0.51	5.23 ± 0.34	0.17 ± 0.07	
EGCN/1rGO	0.52 ± 0.01	7.53 ± 1.39	0.26 ± 0.08	
EGCN/2.5rGO	1.09 ± 0.18	12.51 ± 1.05	0.46 ± 0.05	
EGCN/5rGO	1.00 ± 0.17	11.42 ± 0.15	0.29 ± 0.03	
BGCN/CBB	0.29 ± 0.16	7.13 ± 0.76	0.07 ± 0.02	
BGCN/rGO/CBB	0.92 ± 0.17	6.72 ± 0.36	0.13 ± 0.06	
EGCN/CBB	0.50 ± 0.11	12.88 ± 1.40	0.21 ± 0.10	
EGCN/rGO/CBB	1.27 ± 0.35	23.76 ± 0.86	0.53 ± 0.09	

Table S1: Summary of production rates of H_2 , CO, and CH_4 for all samples in µmol g⁻¹h⁻¹

Photocatalyst	Production (μmol g ⁻¹ h ⁻¹)		Medium Reaction conditions		Light source	Ref. in manuscript
	H ₂	1.3		ambient conditions	300 W Xe, AM 1.5G, 100 mW cm ⁻²	This work
g-C ₃ N ₄ /rGO/Cs ₃ Bi ₂ Br ₉	СО	23.8	CO_2 (g) saturated with H_2O			
	CH ₄	0.5				
$\begin{array}{c} 40 \text{ wt\% } Cs_3Bi_2Br_9/g\text{-} \\ C_3N_4 \end{array}$	СО	14.2	CO_2 (g) saturated with H_2O	ambient conditions	300 W Xe, AM 1.5G, 100 mW cm ⁻²	[1]
MCM-41/Cs3Bi2Br9	СО	17.2	CO_2 (g) saturated with H_2O	20 °C	$300 \text{ W Xe } (\lambda \ge 420 \text{ nm}), 350 \text{ mW cm}^{-2}$	[2]
g-C ₃ N ₄ /rGO/NiAl-LDHs	СО	2.6	$CH_3CN:TEOA:H_2O = 3:1:1$	10 °C	300 W Xe, 1000 mW cm ⁻²	[3]
	CH ₄	20.0	(v/v/v)	10 0		
g-C ₃ N ₄ /NiAl-LDHs	со	8.2	CO_2 (g) saturated with H_2O	ambient conditions	300 W Xe (λ≥ 420 nm)	[4]
g-C ₃ N ₄ /rGO	H ₂	68	0.2 M NaHCO ₃ solution	ambient conditions	300 W Xe, AM 1.5G	[5]
	CH ₃ OH	114	saturated with CO ₂			
rGO with g-C ₃ N ₄ /CdS	СО	23.93	TEOA/H ₂ O solution saturated with CO ₂	0.4 MPa	300 W Xe	[6]
CsPbBr ₃ /g-C ₃ N ₄	СО	28.5	CO_2 (g) saturated with H_2O	-	300 W Xe (λ≥ 420 nm)	[7]

 $CO_{2}\left(g\right)$ with $H_{2}O$

 $Cs_{3}Bi_{2}Br_{9}/BiVO_{4}$

СО

70.63

300 W Xe, AM 1.5G, 100 mW cm⁻²

[8]

25 °C, 101.3 kPa

Table S2: Summary of similar photocatalytic systems reported in literature for
photocatalytic CO2 reduction.

Material	Band gap (Eg) /	Conduction	Work function	Valence band
	eV	band (E _C) / eV	(φ) / eV	$(\mathbf{E}_{\mathbf{V}}) / \mathbf{eV}$
GO	-	-	-4.588	-
rGO	-	-	-4.526	-
BGCN	2.9	-3.52	-5.056	-6.39
EGCN	3.1	-3.37	-5.116	-6.48
CBB	2.6	-3.59	-4.319	-6.19

 Table S3: Summary of the band gap, Work function, and band edge positions of the materials

		Peak binding energy (eV)			
		EGCN	EGCN/rGO	EGCN/rGO/CBB	CBB
C 1s	C-C	284.80	284.80	284.80	284.80
	(C) ₃ -N	286.28	286.35	286.34	-
	C-N-C	288.39	288.29	288.53	-
	O-C=O	289.21	-	-	-
N 1s	C-N=C	298.90	398.82	399.01	-
	(C) ₃ -N	400.11	400.17	400.34	-
	C-N-H	401.22	401.25	401.59	-
Cs	3 <i>d</i> 5	-	-	724.97	724.91
	3 <i>d</i> 3	-	-	738.90	738.83
Bi ⁰	4 <i>f</i> 7	-	-	157.82	-
	4 <i>f</i> 5	-	-	162.93	-
Bi ³⁺	4 <i>f</i> 7	-	-	159.62	159.54
	4 <i>f</i> 5	-	-	164.93	164.80
Br	$3d_{5/2}$	-	-	69.08	68.83
	$3d_{3/2}$	_	-	70.19	69.87

Table S4: Summary of XPS elemental peaks for CBB, EGCN, EGCN/rGO, and EGCN/rGO/CBB

References

- 1. Baghdadi, Y., et al., *Cs3Bi2Br9/g-C3N4 Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Reduction of CO2 to CO.* Chemistry of Materials, 2023. **35**(20): p. 8607-8620.
- 2. Cui, Z., et al., *Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gas–solid condition under visible light.* Applied Catalysis B: Environmental, 2022. **310**: p. 121375.
- 3. Zhou, D., et al., *Reduced graphene oxide assisted g-C3N4/rGO/NiAl-LDHs type II heterostructure with high performance photocatalytic CO2 reduction.* Chemical Engineering Journal, 2022. **450**: p. 138108.
- 4. Tonda, S., et al., *g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels.* ACS Applied Materials & Interfaces, 2018. **10**(3): p. 2667-2678.
- 5. Sahoo, R.C., et al., *Bandgap engineered g-C3N4 and its graphene composites for stable photoreduction of CO2 to methanol.* Carbon, 2022. **192**: p. 101-108.
- 6. Zhao, X., et al., *Reduced graphene oxide-modified Z-scheme g-C3N4/CdS photocatalyst with a staggered structure for the enhanced photoreduction of CO2.* Sustainable Energy & Fuels, 2022. **6**(16): p. 3768-3777.
- 7. Cheng, R., et al., *Incorporation of Cesium Lead Halide Perovskites into g-C3N4 for Photocatalytic CO2 Reduction.* ACS Omega, 2020. **5**(38): p. 24495-24503.
- 8. Zhou, B., et al., *Strain-Engineering of Mesoporous Cs(3) Bi(2) Br(9) /BiVO(4) S-Scheme Heterojunction for Efficient CO(2) Photoreduction.* Small, 2023. **19**(29): p. e2302058.