Supporting Information

Electronically modulated bimetallic telluride nano dendrites atop 2D nanosheets using a vanadium dopant enabling a bifunctional electrocatalyst for overall water splitting

Ishwor Pathak^{a,b}, Alagan Muthurasu^a, Debendra Acharya^a, Kisan Chhetri^a, Bipeen Dahal^c, Yagya Raj Rosyara^a, Taewoo Kim^a, Tae Hoon Ko^a*, Hak Yong Kim^{a,d}*

^a Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea

^b Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal

^c Central Department of Chemistry, Tribhuvan University, Kathmandu 44613, Nepal

^d Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea

Corresponding Author's Email: khy@jbnu.ac.kr / taehoon222@naver.com

Materials

Cobalt nitrate hexahydrate (Co(NO₃)₂.6H₂O, 98.0%), sodium molybdate dihydrate (Na₂MoO₄.2H₂O, \geq 99.0%), vanadium (III) chloride (VCl₃, 97.0%), ammonium fluoride (NH₄F, \geq 98.0%), and tellurium powder (99.8%) were purchased from Sigma–Aldrich Co., St. Louis, MO, USA. Urea (NH₂CONH₂, \geq 99.0%), ethanol (99.5%), and nitric acid (HNO₃, 60.0%) were obtained from Samchun Co. Ltd., Seoul, Korea. All chemicals were of analytical grade and were used without further purification. Deionized (DI) water purified through a Millipore-Q system was used to form aqueous solutions during the experiment.

Electrochemical characterization

Calculation of potential vs. RHE:

As we measure the potentials of the working electrodes in reference to the Ag/AgCl electrode, it is necessary to convert the working potential with respect to the reversible hydrogen electrode (RHE) using standard calibrations as described by the Nernst equation:

$$E_{RHE} = E_{Ag/AgCl} + 0.0596 \times pH + E_{Ag/AgCl}$$
(1)

where E_{RHE} = calculated potential vs. RHE, $E_{Ag/AgCl}$ = measured potential vs. Ag/AgCl, $E^{\circ}_{Ag/AgCl}$ = standard electrode potential of Ag/AgCl electrode (0.197 V at 25 °C), and pH = 13.5-14 for 1 M KOH.

iR correction:

The potential values obtained after LSV measurements were iR corrected using the following equation.

$$E_{iR \ corrected} = E_{(vs.\ RHE)} - i \, X \, R_s \tag{2}$$

where i = current density $R_s =$ resistance of the electrolytic solution (obtained from the EIS Nyquist plot).

Overpotential (η) calculation:

The overpotential of electrocatalysts at a particular current density can be calculated as follows:

 $\eta_{\text{OER}} = E_{\text{RHE}} - 1.23 \text{ V} \tag{3}$

$$\eta_{\rm HER} = E_{\rm RHE} - 0 \, \rm V \tag{4}$$

Tafel slope:

The reaction kinetics of the electrocatalyst were analyzed from the following Tafel equation:

$$\eta = a + b \log j \tag{5}$$

where η , *b*, and *j* are the overpotential, Tafel slope, and current density, respectively. The Tafel slope represents the inherent quality of electrocatalysts, especially addressing the kinetics of the reaction.

Electrochemically active surface area (ECSA):

$$ECSA = \frac{C_{dl}}{C_s}$$
(6)

where, C_{dl} and C_s represent the electrical double layer capacitance and specific capacitance of the electrode surface, respectively. The ECSA is directly proportional to C_{dl} .

Calculation of Faradic efficiency (ηF) :

The Faradaic efficiency (ηF) of the alkaline electrolyzer, utilizing V-CoTe₂/MoTe₂@CC as a bifunctional electrocatalyst was assessed by measuring the volumes of evolved H₂ and O₂ at the cathode and anode, respectively, in a lab-made H-cell. The H-cell electrolyzer was operated at a constant current density of 10 mA cm⁻² for up to 120 minutes. The theoretical volumes of evolved H₂ and O₂ gases were estimated using Faraday's law:

$$V_{Theoritical} = \frac{IRTt}{PzF}$$
(7)

 $V_{Theoritical} =$ Theoretical volume of gas evolution

- I = operating current density (mA cm⁻²)
- R = universal gas constant (0.0821 atm. L mol⁻¹ K⁻¹)
- t = operating time in seconds (s)
- T = temperature on the Kelvin scale (K)

$$p = \text{pressure (atm.)}$$

z = number of electrons involved in the production of 1 mole of O₂ (z = 4) or H₂ (z = 2)

$$F = Faraday's constant (F = 96,485 C)$$

 ηF can be determined from the following equation: the ratio of the exact volume of real gas (V_{Experimental}) to the theoretical volume (V_{Theoretical}) during the reaction.

$$\eta F = \frac{V_{Experimental}}{V_{Theoretical}} * 100\%$$
(8)

where $V_{Experimental}$ is the volume of O₂ and H₂ gas evolved under a pressure of 1 atm at 300 K upon applying a current density of 10 mA cm⁻².

Fig. S1. FESEM image of bare carbon cloth (activated).

Fig. S2. FESEM image of V-CoMoOH@CC grown at different hydrothermal conditions. (a-c) 110 °C, 4 h, (d-f) 130 °C, 8 h (g-i) 130 °C, 5 h and (j-l) 120 °C, 6 h.

The hydrothermal conditions for the optimal growth of the V-CoMoOH nanosheets adhered to carbon clothes were determined by varying the heating temperature and holding time. V-CoMoOH nanosheets were not properly grown when heated to 110 °C for 4 h (**Fig. S2a-c**), possibly due to insufficient time and temperature for self-assembly. The V-CoMoOH nanosheets are not homogenous and the uniformity was destroyed upon heating at a relatively higher temperature (130 °C) for 8h (**Fig. 2d-f**). The V-CoMoOH was grown homogenously at 130 °C, 5

h, however, the nanosheet size was not uniform throughout the material (**Fig. 2g-i**). Homogenously grown uniform nanosheets are clearly observed upon maintaining the hydrothermal condition of 120 °C for 6 h (**Fig. 2j-l**), which is considered an optimized condition.

Fig. S3. EDX analysis of V-CoMoOH@CC. (a) Elemental mapping area, (b) superimposition of all elements, and elemental mapping spectra of (c) Co, (d) Mo, (e) V, (f) C (g) N, and (h) O, and (i) EDX spectrum (inset: element %).

Fig. S4. (a-d) FESEM image of CoMoOH@CC at increasing magnifications.

Fig. S5. (a-d) FESEM images of $CoTe_2/MoTe_2@CC$ at different magnifications. EDX analysis of V-CoCHH@MX/HCF, (e) elemental mapping area, (e₁) superimposition of all elements, and elemental mapping spectra of (e₂) C, (e₃) N, (e₄) O, (e₅) Te, (e₆) Mo, and (e₇) Co, (f) corresponding EDX spectrum, and (j) weight % of different elements.

Fig. S6. TEM characterization of $CoTe_2/MoTe_2@CC$: (a) TEM image, (b) SAED patterns showing polycrystalline nature of the material, (c) corresponding FFT image, (d) HRTEM image, (d₁) lattice fringes of 0.3 nm corresponding to (100) plane of MoTe₂ derived from the selected region (blue dashed box) in (d), (d_{1i}) FFTs of selected region before applying the mask, (d_{1ii}) FFTs after applying the mask, (d_{1iii}) corresponding live profile graph, (d₂) lattice fringes of 0.28 nm corresponding to (101) plane of CoTe₂ derived from the selected region (red dashed box) in (d), (d_{2i}) FFTs of selected region before applying the mask, (d_{2iii}) corresponding to (ashed box) in (d), (d_{2i}) FFTs of selected region before applying the mask, (d_{2iii}) corresponding to (ashed box) in (d), (d_{2ii}) FFTs of selected region before applying the mask, (d_{2iii}) corresponding live profile graph.

Fig. S7. High-resolution XPS spectra of V-CoTe2/MoTe2@CC deconvoluted for C 1s.

Fig. S8. FTIR spectra of (a) CoMoLDH@CC, (b)V-CoMoLDH@CC, (c) CoTe₂/MoTe₂@CC, and (d) V-CoTe₂/MoTe₂@CC.

Fig. S9. (a,b) FESEM images of V-CoTe₂/MoTe₂@CC after HER test.

Fig. S10. XRD patterns of V-CoTe₂/MoTe₂@CC after HER test.

Fig. S11. XPS characterization of V-CoTe₂/MoTe₂@CC after HER test. (a) Low-resolution spectra, and high-resolution spectra of (b) Co 2p, (c) Mo 3d, (d) Te 3d, (e) K 2p + C 1s, and (f) O 1s.

Fig. S12. C_{dl} calculation: CV curves of (a) V-CoTe₂/MoTe₂@CC, (b) CoTe₂/MoTe₂@CC, (c) V-CoMoOH@CC, (d) CoMoOH@CC, and (e) bare carbon cloth at scan rate from 5 to 100 mV s⁻¹,

and (f) CV curves of different electrodes at 50 mV s⁻¹ in 1 M KOH solution for OER.

Fig. S13. Nyquist plot of V-CoTe₂/MoTe₂@CC before and after OER stability test.

Fig. S14. (a,b) TEM images of V-CoTe₂/MoTe₂@CC after OER electrolysis in 1 M KOH for 100 h.

Fig. S15. XPS characterization of V-CoTe₂/MoTe₂@CC after OER test. (a) Low-resolution spectra, and high-resolution spectra of (b) O 1s, (c) Co 2p, (d) Mo 3d, (e) Te 3d, and (f) K 2p + C 1s.

Fig. S16. XRD patterns of V-CoTe₂/MoTe₂@CC before and after OER test.

Fig. S17. Raman spectrum of V-CoTe₂/MoTe₂@CC after 100 h OER stability test.

Table S1: Atomic % of different elements of	bserved in the XPS survey spectrum.
---	-------------------------------------

Element	Atomic % of elements in			
	V-CoTe ₂ /MoTe ₂ @CC	CoTe ₂ /MoTe ₂ @CC		
Co 2p	14.32	15.96		
Mo 3d	12.1	13.35		
V 2p	4.06	0.00		
Te 3d	38.89	36.81		
O 1s	6.56	6.08		
N 1s	2.41	2.3		
C 1s	21.66	24.5		

Table S2: Elemental compositions of V-CoTe₂/MoTe₂@CC determined with ICP-OES analysis.

Element	Atomic %
Со	23.89
Мо	21.25
V	7.47
Те	47.39

Samples	V-CoTe ₂ /MoTe ₂ @CC	CoTe ₂ /MoTe ₂ @CC
BET surface area (m ² g ⁻¹)	279.5	225.2
Total pore volume (cm ³ g ⁻¹)	0.481	0.324
Average pore diameter (nm)	5.5	5.1

Table S3: The BET surface area, the total pore volume, and the average pore diameter of different samples.

Table S4. Comparison table for HER performance with recently reported similar electrocatalysts.

S.N.	Electrocatalysts	substrate	Electrolyt	Overpotential	Tafel slope	Ref.	
			e	(mV)	(mV dec ⁻¹)		
1.	Co ₆ Mo ₆ C/MoC/Co	nickel foam	1 M KOH	52	54	1	
2.	Co ₅ Mo ₁₀ S _x /CC	carbon cloth	1 M KOH	36	56	2	
5.	Te-CoMoO ₃ @C	carbon matrix	1 M KOH	76	-	3	
6.	Co _{0.677} V _{0.33} P@CC	carbon cloth	1 M KOH	77	-	4	
7.	CoTe ₂ /CoP	Ti mesh	1 M KOH	80	57	5	
8.	CoMoVLDH/NF	nickel foam	1 M KOH	150	182	6	
9.	CC/MOF- CoSe ₂ @MoSe ₂	carbon cloth	1 M KOH	109.87	68.91	7	
10.	MoS ₂ @Co _{1.11} Te ₂ /Co- NCD-T	nickel foam	1 M KOH	124	49	8	
11.	SeMoTe	nickel foam	1 М КОН	85	70	9	
12.	Co _{1.11} Te ₂ /Te (Te-Co- 3)	nickel foam	1 M KOH	135	56	10	
13.	o-CoSe ₂ /c- CoSe ₂ /MoSe ₂	carbon cloth	1 M KOH	112	96.9	11	
14.	V-	Carbon	1 M KOH	79	58.9	This	
	CoTe ₂ /MoTe ₂ @CC	cloth				work	

S.N.	Electrocatalysts	substrate	Electrolyte	Overpotential (a) 10 mA cm ⁻ 2	Tafel slope (mV dec ⁻¹)	Ref.
				(mV)		
1.	Co ₆ Mo ₆ C/MoC/Co	nickel foam	1 M KOH	223	106	1
2.	Co ₅ Mo ₁₀ S _x /CC	carbon cloth	1 M KOH	153	57.8	2
3.	Te-CoMoO ₃ @C	carbon matrix	1 M KOH	215	64	3
4.	Co _{0.677} V _{0.33} P@CC	carbon cloth	1 M KOH	290	55.59	4
5.	CoTe ₂ /CoP	Ti mesh	1 M KOH	260	89	5
6.	CoMoVLDH/NF	nickel foam	1 M KOH	270	106	6
7.	Co _{1.11} Te ₂ /Te	nickel foam	1 M KOH	261	52.6	10
8.	Co _{0.50} Mo _{0.50} Te ₂	nickel foam	1 M KOH	160	62	12
9.	CoO@S-CoTe	nickel foam	1 M KOH	246	56	13
10.	S-CoTe/CC	carbon cloth	1 M KOH	257	63	14
11.	СоТе	glassy carbon	1 M KOH	316	86	15
12.	V-	carbon	1 M KOH	249	57.7	This
	CoTe ₂ /MoTe ₂ @CC	cloth				work

Table S5. Comparison table for OER performance with recently reported similar electrocatalysts.

 Table S6. Comparison table for overall full cell water-splitting performance with recently reported similar electrocatalysts.

S.N.	Electrocatalysts	substrate	Electrolyte	Cell Voltage	Ref.
				@ 10 mA cm ⁻²	
				(V)	
1.	Co-Mo-0.125-6N // Co-Mo-	nickel foam	1 M KOH	1.53	1
	0.125-6N				

2.	Co ₅ Mo ₁₀ S _x /CC //	carbon cloth	1 M KOH	1.51	2
	Co ₅ Mo ₁₀ S _x /CC				
4.	Te-CoMoO ₃ @C // Te-	carbon	1 M KOH	1.54	3
	CoMoO ₃ @C	matrix			
5.	Co _{0.677} V _{0.33} P@CC //	carbon cloth	1 M KOH	1.61	4
	Co _{0.677} V _{0.33} P@CC				
7.	CoMoVLDH/NF //	nickel foam	1 M KOH	1.61	6
	CoMoVLDH/NF				
8.	CC/MOF-CoSe ₂ @MoSe ₂ //	carbon cloth	1 M KOH	1.53	7
	CC/MOF-CoSe ₂ @MoSe ₂				
6.	Co _{1.11} Te ₂ /Te (Te-Co-3) //	nickel foam	1 M KOH	1.56	10
	$Co_{1.11}Te_2/Te$ (Te-Co-3)				
9.	o-CoSe ₂ /c-CoSe ₂ /MoSe ₂ // o-	carbon cloth	1 M KOH	1.63	11
	$CoSe_2/c-CoSe_2/MoSe_2$				
3.	Co _{0.50} Mo _{0.50} Te ₂ //	nickel foam	1 M KOH	1.39	12
	$Co_{0.50}Mo_{0.50}Te_2$				
10.	V-CoTe ₂ /MoTe ₂ @CC // V-	carbon cloth	1 M KOH	1.51	This
	CoTe ₂ /MoTe ₂ @CC				work

References:

- 1. X. Zhang, A. Wu, D. Wang, Y. Jiao, H. Yan, C. Jin, Y. Xie and C. Tian, *Applied Catalysis B: Environmental*, 2023, **328**, 122474.
- 2. Y. Lu, X. Guo, L. Yang, W. Yang, W. Sun, Y. Tuo, Y. Zhou, S. Wang, Y. Pan, W. Yan, D. Sun and Y. Liu, *Chemical Engineering Journal*, 2020, **394**, 124849.
- 3. L. Wang, H. Yu, S. Zhao, H. Ma, L. Li, F. Hu, L. Li, H. Pan, K. M. El-Khatib and S. Peng, *Inorganic Chemistry Frontiers*, 2022, **9**, 3788-3796.
- 4. H. Han, F. Yi, S. Choi, J. Kim, J. Kwon, K. Park and T. Song, *Journal of Alloys and Compounds*, 2020, **846**, 156350.
- 5. L. Yang, X. Cao, X. Wang, Q. Wang and L. Jiao, *Applied Catalysis B: Environmental*, 2023, **329**, 122551.
- 6. J. Bao, Z. Wang, J. Xie, L. Xu, F. Lei, M. Guan, Y. Zhao, Y. Huang and H. Li, *Chemical Communications*, 2019, **55**, 3521-3524.
- 7. S. J. Patil, N. R. Chodankar, S.-K. Hwang, P. A. Shinde, G. Seeta Rama Raju, K. Shanmugam Ranjith, Y. S. Huh and Y.-K. Han, *Chemical Engineering Journal*, 2022, **429**, 132379.
- 8. Z. Liu, S. Yun, M. Sun, J. Dang, Y. Zhang, Y. Wang, C. Dang, Y. Deng and D. Qiao, *Materials Today Nano*, 2022, **20**, 100274.
- 9. D. Vikraman, S. Hussain, I. Rabani, A. Feroze, M. Ali, Y.-S. Seo, S.-H. Chun, J. Jung and H.-S. Kim, *Nano Energy*, 2021, **87**, 106161.

- 10. G. Wang, C. Hua, W. Chen, H. Fan, P. Feng and Y. Zhu, *Electrochimica Acta*, 2023, 447, 142133.
- 11. Y. Ji, W. Luo, Y. Liu, Z. He, N. Cheng, Z. Zhang, X. Qi, J. Zhong and L. Ren, *Materials Today Chemistry*, 2022, **23**, 100724.
- 12. D. Vikraman, S. Hussain, Z. Abbas, K. Karuppasamy, P. Santhoshkumar, J. Jung and H.-S. Kim, *ACS Applied Materials & Interfaces*, 2023, **15**, 26893-26909.
- 13. X. Wang, Z. Mao, X. Mao, X. Hu, F. Gao, M. Gao, Q.-L. Wu, X. Lyu, A. Du, X. Xu, Y. Jia and L. Wang, *Advanced Science*, 2023, **10**, 2206204.
- 14. L. Yang, H. Qin, Z. Dong, T. Wang, G. Wang and L. Jiao, *Small*, 2021, 17, 2102027.
- 15. D. A. Alshammari, Y. M. Riyad, S. Aman, N. Ahmad, H. M. Tahir Farid and Z. M. El-Bahy, *Journal of Electroanalytical Chemistry*, 2023, **945**, 117701.