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1. Characterization 

    The morphology and microstructure of the samples were examined using the field emission 

scanning electron microscopy (SEM, JSM-6700F, JEOL, Japan) and transmission electron 

microscopy (TEM, JEM-2100F, JEOL). The crystallographic information of the samples was 

collected by an X-ray diffractometer (XRD, D8-Advance, Bruker, Germany). Detailed 

elemental composition and chemical states of the samples were determined using X-ray 

photoelectron spectroscopy (XPS, Thermo escalab 250Xi). Elemental content was analyzed 

through inductively coupled plasma optical emission spectroscopy (ICP-OES, Avio 500, 

PerkinElmer, USA). The BET surface area and pore size of the samples were analyzed using 

N2 adsorption-desorption isotherms on the Quantachrome NovaWin Surface Area Analyzer 

(Quantachrome Nova 2000e, USA). 

2. Electrocatalytic measurements 

    The electrochemical performance of the samples was evaluated using a three-electrode 

system. The counter electrode was a platinum wire, while the reference electrode was 

Hg/HgO and the electrolyte was KOH solution (1 M). Electrochemical experiments were 

conducted using a CHI760E electrochemical workstation connected to a rotating disk 

electrode (RRDE-3A, ALS Inc., Tokyo, Japan). The catalyst ink was formulated at a ratio of 4 

mg sample to 1 mL of 5 wt% Nafion solution. After being ultrasonically dispersed for 6 h, the 

catalyst ink was drop-cast onto the surface of a polished glassy carbon electrode (diameter of 

3 mm) at a loading amount of 0.2 mg cm−2. The ink-coated electrode was air-dried thoroughly 

at room temperature. The OER performance of the samples was investigated using cyclic 

voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance 

spectroscopy (EIS) in a three-electrode configuration. CV curves were recorded with a scan 

rate of 20~100 mV s−1. The double-layer capacitance (Cdl) was determined from the CV 

curves in the non-Faradaic region (0.9~1.0 V vs. RHE). LSV curves were tested at a scan rate 
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of 5 mV s−1. The chronoamperometry technique was employed to measure the current at a 

constant potential of 1.52 V (vs. RHE). EIS measurements were conducted over a frequency 

range of 0.01 Hz to 100 kHz with an AC voltage amplitude of 5 mV. All electrochemical 

potentials were converted to the reversible hydrogen electrode (RHE) scale according to the 

Nernst equation: ERHE = EHg/HgO + 0.0591 × pH + 0.098. The overpotential is defined as the 

potential difference between ERHE and E0 (OER equilibrium potential, 1.23 V). The 

overpotential mentioned in the main text has been iR-corrected. 

3. Density functional theory (DFT) calculations

    All calculations were conducted within the framework of density functional theory (DFT), 

utilizing the Vienna Ab initio Simulation Package (VASP) for the evaluation of Gibbs free 

energy and density of states (DOS) [1]. The exchange-correlation energy was computed using 

the generalized gradient approximation (GGA) and the Perdew-Burke-Ernzerhof (PBE) 

functional [2]. The plane-wave cutoff energy was set to 400 eV. For determining the 

optimized geometric structures, the convergence criterion for atomic forces was set to 0.001 

eV/Å-1. Additionally, to prevent interactions between different slabs, a sufficient vacuum 

space of 15 Å was included in the construction of the surface slab model. A single gamma-

point grid was used for sampling the Brillouin zone during geometric optimization. The DFT-

D3 dispersion correction method was used to illustrate the weak interaction betweenthe slab 

and the active species [3]. 

4. Theoretical model 

    The OER cycle proposed by precious work [4-8]. In detail, For OER in alkaline electrolyte 

(pH=14), since OH- may act as an electron donor, the overall reaction scheme of OER can be 

expressed as: 

OH- + ∗ → OH∗ + e- (1) 
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OH∗ + OH- → O∗ + H2O (l) + e- (2) 

O∗ + OH- → OOH∗ + e- (3) 

OOH∗ + OH- → O2(g) + H2O(l) + e- + ∗ (4)

    For each elementary step associated with OER, the Gibbs reaction free energy ΔG is 

defined as the difference between free energies of the initial and final states, given by the 

following expression:

ΔG = ΔE + ΔZPE ‒ TΔS (5)

where ΔE is the reaction energy of reactant and product molecules adsorbed on catalyst 

surface, and ΔZPE and ΔS are the change in zero-point energies and entropy in the reaction.

    The reaction free energy of (1)-(4) for the OER can be determined from the following 

equations:

OH- + ∗ → OH∗ + e-

ΔG1 = GOH* + Ge- ‒ GOH- ‒ G∗ 

= GOH* + Ge- ‒ (GH2O(l) + Ge- ‒ 1/2GH2(g)) ‒ G∗ 

= GOH* + 1/2GH2(g) ‒ GH2O(l) ‒ G∗ 

= ΔGOH* (6)

OH∗ + OH - → O∗ + H2O + e - 

ΔG2 = GO*+ GH2O + Ge- ‒ GOH- ‒ GOH* 

= GO* + GH2O + Ge- ‒ [GH2O(l) + Ge- ‒ 1/2GH2(g)] ‒ GOH* 

= (GO* + GH2‒ GH2O(l) ‒ G∗) ‒ (GOH* + 1/2GH2(g) ‒ GH2O(l) ‒ G∗) 

= ΔGO* ‒ ΔGOH* (7) 

O∗ + OH - → OOH∗ + e - 

ΔG3 = GOOH* + Ge- ‒ GO* ‒ GOH- 

= GOOH* + Ge- ‒ GO* ‒ (GH2O(l) + Ge-1/2GH2(g)) 



S5

= (GOOH* + 3/2GH2(g) ‒ 2GH2O(l) ‒ G∗) ‒ (GO* + GH2(g) ‒ GH2O(l) ‒ G∗) 

= ΔGOOH* ‒ ΔGO* (8) 

OOH∗ + OH - → O2(g) + H2O(l) + e - + ∗ 

ΔG4 = GO2(g) + GH2O(l) + Ge- + ∗ ‒ GOOH* ‒ GOH- = (2GH2O(l) ‒ 2GH2(g) + 4 × 1.23) 

+ GH2O(l) + Ge- + ∗ ‒ GOOH* ‒ (GH2O(l) + Ge- ‒ 1/2GH2(g)) 

= 2GH2O(l) ‒ 1/2GH2(g) + ∗ ‒ GOOH* 

= 4.92 ‒ ΔGOOH* (9)

    With this method, the theoretical overpotential (UOER) at standard condition is defined as:

UOER = (GOER / e) - 1.23 (10)

where GOER is the potential determining step defined as the highest free-energy step in the 

OER, and e is unit charge.
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Figure S1. SEM images of Ti3AlC2 MAX. 

Figure S2. SEM images of MAX@NaCl/KCl. 
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Figure S3. SEM images of cross-section for MAX@NaCl/KCl-S. 

Figure S4. SEM images of longitudinal direction for MAX@NaCl/KCl-S. 
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Figure S5. SEM images of cross-section for MXene@Co0.7Fe0.3. 

Figure S6. SEM images of longitudinal direction for MXene@Co0.7Fe0.3. 
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Figure S7. Elemental mapping images of MXene@Co0.7Fe0.3. 

Figure S8. SEM images of cross-section for MXene@CoS/FeS2. 
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Figure S9. SEM images of longitudinal direction for MXene@CoS/FeS2. 

Figure S10. Elemental mapping images of C elements for MXene@CoS/FeS2. 
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Figure S11. Elemental mapping images of MXene@CoS/FeS2. 

Figure S12. SEM images of MXene@CoS. 
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Figure S13. Elemental mapping images of MXene@CoS. 

Figure S14. SEM images of MXene@FeS2. 
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Figure S15. Elemental mapping images of MXene@FeS2. 

Figure S16. TEM images of MAX@NaCl/KCl-S. 
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Figure S17. TEM images of surface for MXene@CoS/FeS2. 

Figure S18. TEM images of cross-section for MXene@CoS/FeS2. 
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Figure S19. (a) TEM and (b) images of MXene@CoS/FeS2. 

Figure S20. XRD patterns of MAX@NaCl/KCl and MAX@NaCl/KCl-S. 
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Figure S21. XRD patterns of MXene@CoS and MXene@FeS2. 

Figure S22. XPS survey spectra of MXene@Co0.7Fe0.3 and MXene@CoS/FeS2. 
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Figure S23. High-resolution XPS spectra of C 1s for MXene@Co0.7Fe0.3 and 

MXene@CoS/FeS2. 

Figure S24. LSV polarization curves for MXene@CoS/FeS2 obtained under various 

conditions: (a) MAX content, (b) mole ratios of Co salt and Fe salt, and (c) sulfidation 

temperatures. (d) Overpotentials of all the catalysts at the current densities of 10 mA cm−2. 
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Figure S25. LSV curves of CoS, FeS2, CoS/FeS2, MXene/CoS, MXene/FeS2, and 

MXene@CoS/FeS2. 

Figure S26. Nyquist plots for MXene and MAX. 
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Figure S27. CV curves of (a) MXene@CoS/FeS2, (b) RuO2, (c) MXene@Co0.7Fe0.3, (d) 

MXene@CoS, and (e) MXene@FeS2 catalysts at the scan rates of 20, 40, 60, 80, and 100 mV 

s−1. 

Figure S28. LSV polarization curves normalized by ECSA. 
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Figure S29. High-resolution XPS spectra of (a) Co 2p, (b) Fe 2p, (c) S 2p, (d) Ti 2p, (e) O 1s, 

and (f) C 1s for MXene@CoS/FeS2 catalyst after long-term stability test. 

Figure S30. Schematic diagram of MXene@CoS/FeS2 adsorption models for (a) *OH, (b) *O, 

and (c) *OOH. 
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Figure S31. Schematic diagram of MXene@CoS adsorption models for (a) *OH, (b) *O, and 

(c) *OOH. 

Figure S32. Schematic diagram of MXene@FeS2 adsorption models for (a) *OH, (b) *O, and 

(c) *OOH. 



S22

Figure S33. Calculated OER free-energy diagrams of catalysts at potential of 1.23 V.

Figure S34. PDOS curves of MXene@CoS/FeS2, MXene@CoS and MXene@FeS2.



S23

Table S1. Element contents in the MXene@CoS/FeS2 heterostructures detected by XPS 

technique. 

Elements Atomic %

C 25.14

S 11.64

O 46.24

N 5.05

Ti 3.66

Co 4.53

Fe 3.74

Table S2. Element contents in the MXene@CoS/FeS2 heterostructures detected by ICP-OES 

technique. 

Elements (mass %) 
Samples

Co Fe Ti S

MXene@CoS 24.07 15.18 7.56

MXene@FeS2 22.90 16.86 4.23

MXene@CoS/FeS2 19.61 6.32 11.40 9.99%
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Table S3. Electrocatalytic performances of MXene@CoS/FeS2 and recently advanced OER 

catalysts. 

Electrocatalysts Loading 
(mg cm-2)

OER η (mV) 
@10 mA cm-2 Electrolyte Ref.

ACTP5@Co,N-800 0.30 374 0.1 M KOH [9]

MXene/ZIF-67 0.5 366 1 M KOH [10]

NiCoS/Ti3C2Tx 0.21 365 1 M KOH [11]

NiCo2O4/MXene - 360 1 M KOH [12]

BP-CN-c 0.50 350 1 M KOH [13]

MnSAC 0.10 350 0.1 M KOH [14]

NiO@MXene - 346 1 M KOH [15]

Ni(OH)2/Ni3S2 - 340 1 M KOH [16]

MoSe2/MXene 2-3 340 1 M KOH [17]

Co/CoSe - 320 1 M KOH [18]

CoFe PBA@CoP/NF - 312 1 M KOH [19]

CoSe2@MoSe2 0.54 309 1 M KOH [20]

Fe-Co-CN/rGO-700 0.25 308 1 M KOH [21]

CoSA/N,S-HCS 1.50 306 1 M KOH [22]

FeS2/TiO2 0.25 300 1 M KOH [23]

Co3O4/CC - 300 1 M KOH [24]

MXene/NiCoFePx-NC 0.20 293 1 M KOH [25]

P-Co3O4 0.30 290 1 M KOH [26]

Ni/Ni2P@N-CNF 0.25 285 1 M KOH [27]

P30-doped Fe/NF - 284 1 M KOH [28]

(CoFeNiMnCu)S2 0.16 284 1 M KOH [29]

MXene@CoS/FeS2 0.2 278 1 M KOH This work

Co-MOF-NK 1.00 268 1 M KOH [30]

PtSA-PtCo NCs/N-CNTs - 252 1 M KOH [31]

Ni0.85Se-O/CN - 240 1 M KOH [32]
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Table S4. Cdl and ECSA values of the the samples. 

Samples Cdl (mF cm-2) ECSA

MXene@CoS/FeS2 5.7 142.5

MXene@Co0.7Fe0.3 4.5 112.5

RuO2 5.4 135

MXene@CoS 3.8 95

MXene@FeS2 2.5 62.5

Note: ECSA values were calculated using the following equation: ECSA = Cdl/Cs, where Cs is 

the specific capacitance (typically 40 μF cm-2 in 1 M KOH). 
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