Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Low Pt-loaded electrode electrochemical synthesized from bulk metal for electrocatalytic applications

Xiaofeng Lu^a, Shizhao Wu^{a,*}, Shitao Zheng^a, Xinying Sun^a, Enjie Wang^a, Youqun Chu^{a,b,c}, Jing

Gao^{a,b,c}, Guohua Li^{a,b,c}

^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's

Republic of China

^bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology

°Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province

*Corresponding authors.

E-mail addresses: 50m@zjut.edu.cn (S. Wu)

Fig. S1. XPS spectra : (a)Pt 4f for Pt/WC_{1-x}/WO₃ and Pt/WO₃, (b)W 4f for Pt/WO₃.

Fig. S2. (a-b) SEM images of the Pt/WO3 nanocomposites.

Fig. S3. (a-f) EDS element mapping images of Pt/WC_{1-x}/WO₃.

Fig. S4. (a-f) HAADF-STEM and corresponding elements mapping images of Pt/WC_{1-x}/WO₃.

Fig. S5. Current densities normalized Pt mass at different potentials for $Pt/WC_{1-x}/WO_3$ and Pt/C.

Fig. S6. SCV and LSV curves of Pt/WC_{1-x}/WO₃

Fig. S8. Double-layer capacitances (C_{dl}) for HER comparison of Pt/WC_{1-x}/WO₃, along with 20% Pt/C, and Pt/WO₃.

Fig. S9. (a) LSV curves normalized by ECSA; (b) Tafel plots of the LSV curves normalized by geometric area.

M CH₃OH and 0.5 M H₂SO₄.

Fig. S11. (a) CV curves of Pt/WC_{1-x}/WO₃ in 0.5 M H₂SO₄ + 1 M C₂H₆O₂ normalized by the surface geometric area; (b) CV curves of Pt/WC_{1-x}/WO₃ in 0.5 M H₂SO₄ + 1 M C₃H₈O₃ normalized by the surface geometric area.

Table S1 ICP-OES of Pt/WC_{1-x}/WO₃.

(m₀-Sample quality, V₀- constant volume, C₀- Test Solution Element Concentration, C₁- Concentration of elements in digestion solution/original sample solution, C_x- Sample Elemental Content)

	m ₀ (g)	V ₀ (mL)	test element	C。 (mg/L)	dilution factor	C ₁ (mg/ L)	C _x (mg/kg)	W (%)
Pt/WC _{1-x} /WO ₃	0.0571	25	Pt	1.40	1	1.40	610.90	0.06%

catalyst	electrolyte	Mass activity (A·mg-1	Ref	
	0.5 M H SO +1 M	1 18	This work	
$\Gamma U W C_{1-x} W O_3$	$0.3 \text{ M} \text{ H}_2 \text{SO}_4 \pm 1 \text{ M}$	1.10	THIS WORK	
200/ D+/C	$C\Pi_3 O\Pi$	0.48	This work	
20 % FUC	$0.3 \text{ M } \Pi_2 \text{SO}_4 + 1 \text{ M}$	0.48	THIS WORK	
A@N:@D4N: A	0.5 M H SO + 1 M	0.25	Nana Enangy 2019	
Au@INI@FUNIAu	$0.3 \text{ M } \Pi_2 \text{SO}_4 + 1 \text{ M}$	0.55	52 22-28	
Dt An NWG	CH_3OH	1.04	$J_{2}, Z_{2}-Z_{0}$	
Ft-Au INWS	$0.1 \text{ M} \text{ HClO}_4 \pm 1 \text{ M}$	1.04	Nano Lett. 2025, 25	
\mathbf{D}_{4} A \sim DSNC \sim		0.5(7	/, 2/38-2/03	
rt-Ag DSNCS	$0.3 \text{ M} \Pi_2 S O_4 + 1 \text{ M}$	0.307	Аррі. Catal. В	
	СН3ОН		Environ. 2021,	
D4NI: N/C A		0.08	282,119393	
PUNI3-INGA	$0.5 \text{ M H}_2 \text{SO}_4 + 1 \text{ M}$	0.98	Green Chem. 2025.	
		0.01	25. 3198	
Core@pt-NCs	$0.5 \text{ M H}_2 \text{SO}_4 + 1 \text{ M}$	0.91	J. Mater. Chem. A,	
D/T. W. N.O.		0.50	2022, 10, 13345	
$Pt_1/I_{0.8}W_{0.2}N_xO_y$	$0.5 \text{ M H}_2 \text{SO}_4 + 1 \text{ M}$	0.56	Electrochim. Acta	
	CH ₃ OH	0.01	432 (2022) 141161	
PtPdCo MHNPs	$0.5 \text{ M H}_2 \text{SO}_4 + 1 \text{ M}$	0.91	Nanoscale 2019, 11	
	CH ₃ OH		4/81-4/8/	
CuNi@PtCu OCs	0.1 M HClO ₄ +1.0 M	1.01	Angew. Chem. Int.	
	CH ₃ OH		Ed. 2021, 133, 7753	
			7758	
AL-Pt/Pt ₃ Ga	0.5 M H ₂ SO ₄ +1 M	1.094	J. Am. Chem. Soc.	
	CH ₃ OH		2018, 140, 2773-	
			2776	
PtBi/fcc-Pt NSs	0.1 M HClO ₄ +0.1 M	1.1	ACS Catal. 2018, 8	
	CH ₃ OH		5581-5590	
GDY@PtCu	0.5 M H ₂ SO ₄ +1 M	0.7	Nano Today 39	
	CH ₃ OH		(2021) 101213	
Pt-Pt ₅ P ₂ PNCs	0.5 M H ₂ SO ₄ +1 M	1.37	Adv. Funct. Mater.	
	CH ₃ OH		2022, 32, 2205985	
PtCo/N-CNT-M	0.5 M H ₂ SO ₄ +1 M	0.767	Nanoscale, 2022,	
	CH ₃ OH		14,14199–14211	