Supplementary material

Revealing the mass transfer of proton donors for tailoring hydrogen

evolution coupled with manganese electrodeposition

Cai Tan^a, Chaoyi Chen^{a,b*}, Fan Yang^{a,b*}, Junqi Li^a, Liangxing Jiang^c, Changping Shi^a, Jiangyuan Yang^a, Yuanyu Chen^a, Lu Yu^a,

^aCollege of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China

^bGuizhou Province Dual Carbon and New Energy Technology Innovation and Development Research Institute, Guiyang 550025, China

^cSchool of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China

^{*} Corresponding author

E-mail address: ccy197715@126.com; fyang7@gzu.edu.cn

1	This file includes:
2	Supplementary Notes 1 to 7
3	Supplementary Figures 1 to 10
4	Supplementary Tables 1 to 6
5	Supplementary References 1 to 5
6	
7	Table of Contents
8	Supplementary material1
9	1. Supplementary Notes
10	2. Supplementary figures10
11	3. Supplementary tables16
12	4. Supplementary References
13	
14	
15	

1 1. Supplementary Notes

2 In-situ Raman spectroelectrochemical investigation

3 *In situ* Raman spectra were recorded on a LabRAM HR Evolution (HORIBA Scientific) 4 spectrometer with a He-Ne laser (wavelength λ =532 nm), 50× objective, and 600 lines 5 mm⁻¹ grating. The 50% laser intensity for 120s with two sweeps per spectrum was used 6 to attenuate the absorption of the Raman signal by the liquid and obtain a good signal-7 noise ratio (SNR). A Pt wire and a saturated Hg/Hg₂O electrode (saturated M KCl as 8 inner filling electrolyte) were applied as the counter electrode and the reference 9 electrode, respectively. The electrochemical conditions were maintained by applying a 10 constant potential of 0~2.0 V using an electrochemistry workstation.

1 The cathode current efficiency and DC power consumption

2 Galvanostatic electrowinning was carried out at a current density of $400 \cdot \text{A} \cdot \text{m}^{-2}$ 3 (maintained for 1 hour at a temperature of 30 ° C). The electrolyte was composed of 20 4 g/L MnSO₄·H₂O and 130 g/L (NH₄)₂SO₄ (the results are shown in Figure 1e). After the 5 end of electrolysis, the cathode is placed in a vacuum drying tank and dried at 60 °C 6 for 12 h. After the electrode is cooled to room temperature, the change of cathode mass 7 (Δ m) is measured, and the cathode current efficiency (CE) and DC power consumption 8 (EC) are calculated according to (Eq. S1) and (Eq. S2), respectively.

9
$$CE = \frac{VmzF}{ItM_{Mn}} \times 100\%$$
 (Eq. S1)

10
$$EC = \frac{Q_{Mn} \times U}{CE}$$
 (Eq. S2)

11 Where *I* is the current intensity; *t* is time; and M_{Mn} is the relative atomic mass of Mn, *U* 12 is the trough voltage; Q_{Mn} is the theoretical power consumption of manganese 13 precipitation.

1 The electrochemical impedance spectroscopy

2 The fitting data (dots) were obtained by fitting experimental data (lines) using 3 Armstrong equivalent circuits (Figure S2). Where the constant phase element (CPE_{dl}) 4 replaces the capacitive element (C_{dl}) in the fitting process, *Rs* represents the sum of 5 electrode internal resistance and electrolyte resistance, C_{dl} represents the double-layer 6 capacitor, R_1 represents the desorption resistance of H_{ads} , R_2 , and CPE_{dl} represent the 7 adsorption resistance and the corresponding capacitance, and the resistance of the 8 constant phase element is calculated by Eq. S3.

$$Z_{CPE} = \frac{1}{Q(jw)^n}$$
(Eq. S3)

9

10 Q is the double-layer capacitor; j is the arithmetic square root of -1; ω is the angular 11 frequency, n characterizes the deviation between the electrode surface and the ideal 12 parallel double layer.

13 14

Figure S1 Diagram of Armstrong equivalent circuit

1 The activation energy

2 Figure S5 shows the linear sweep voltammetry (LSV) curves of HER at 25 °C, 30 °C,
3 35 °C, 40 °C, and 45 °C, it can be seen that the current increases with the increase of
4 temperature during the electrolysis process, in this work, the apparent activation energy
5 of HER can obtain from the classical Arrheniusis (Eq. S4) [1]:

6
$$\ln(j) = \ln A + \frac{E_a}{RT}$$
 (Eq. S4)

7 Where R is the molar gas constant, j is the current density, and A and E_a are two 8 empirical parameters, called the anterior parameter and the activation energy, 9 respectively.

10

11 The Tafel slope

12 The Overpotential (η_{HER}) of HER was corrected by fitting experimental data in equation 13 S5, then the Tafel slope can be obtained by plotting current density (log (i) vs 14 overpotential (η_{HER}).

15
$$\eta_{HER} = E - iR - \left(E_{H^+/H}^{\theta} + \frac{2.303 \text{RT}}{\text{ZF}} \log C_{H^+}\right)$$
 (Eq. S5)

16 Where *R* is the solution resistance between the reference electrode and the working 17 electrode, and $E_{H^+/H}^{\theta}$ and C_{H^+} are the standard electrode potential of the H⁺/H electric 18 pair and the H⁺ concentration of the bulk solution, respectively. 19

1 The density functional theory calculations

The adsorption energy of PDs and Gibbs free energy of HER are considered, in this 2 3 study, and the possible reaction pathway of the HER (Including Volmer, Heyrovsky, and Tafel reaction pathway) in the neutral solution is as follows: 4 5 1) H₂O 6 the alkaline Volmer reaction pathway: *+H₂O=*H₂O 7 $*H_{2}O+e^{-}=*H_{ada}+*OH^{-}$ 8 9 the alkaline Heyrovsky reaction pathway: $H_{ads} + H_2O = H_{ads} + H_2O$ 10 $H_{ads} + H_2O + e^- = H_2 + OH^-$ 11 the alkaline Tafel reaction pathway: 12 $H_{ads} + H_{ads} = H_2$ 13 *H₂=H₂ 14 15 2) NH₄⁺ 16 the alkaline Volmer reaction pathway: *+NH₄⁺=*NH₄⁺ 17 $*NH_{4}^{+}+e^{-}=*NH_{3}+*H_{ads}$ 18 the alkaline Heyrovsky reaction pathway: 19 $*H_{ads} + NH_{4}^{+} = *H_{ads} + *NH_{4}^{+}$ 20 $*H_{ads} + NH_{4}^{+} + e^{-} = NH_{3} + H_{ads}$ 21

For the free energy calculations of each step mentioned above, a correction is applied
by computing the frequencies of surface-adsorbed molecules [2, 3]. The corrected free
energy is calculated as follows :

$$\Delta G = \Delta E - \Delta Z P E - T \Delta S + \Delta G_U$$

26 Here, ΔZPE represents the zero-point vibrational energy, T ΔS is the entropy correction,

¹ and ΔG_U is equal to eU, where U is the mentioned potential of 0 V.

1 Dynamics simulation of hydrogen evolution

The study has proposed that H₂O rather than H⁺ is the reactant of HER in an 2 3 alkaline/neutral environment, which directly dissociates on the surface of the electrode [4]. However, in the presence of multiple proton donors, not only water molecules at 4 the electrolyte interface can participate in HER, but also other proton donors (such as 5 HPO_4^- , NH_4^+) [5]. Therefore, with consideration of the presence of multiple proton 6 donors (H₂O, NH₄⁺), a microkinetic model for HER in a neutral environment was 7 8 constructed as shown in Tables S3~S6, which list the elementary reaction steps and the enrolled reaction rate equations of HER in a neutral electrolyte. where r is the 9 elementary reaction rate [mol·m⁻²·s⁻¹], K is the reaction rate constant [mol·m⁻²·s⁻¹], c is 10 the concentration [mol·m⁻³], α is the symmetry coefficient, η is the overpotential [V], 11 R is the molar gas constant [J·mol⁻¹·K⁻¹], T is the temperature [K], θ is the coverage, θ 12 subscripts Hads represent the activated of adsorbed H intermediate. 13

14

1 2. Supplementary figures

Figure S3 X-ray diffraction of SPE and RCC

Figure S5 LSV curves of HER on RCC (130 g/L (NH₄)₂SO₄, 1000 rpm)

Figure S6 Order of reaction on RCC at -0.8~-1.3 V potential (0 rpm)

Heyrovsky

Figure S8 Minimum energy path (MEP) of the Volmer and Heyrovsky reaction of
 H₂O and NH₄⁺

7

8 Figure S11 In-situ Raman tests of HER in the H₂O-130g/L(NH₄)₂SO₄ at -0.2~-1.8V

Raman (cm⁻¹)

potentials

3. Supplementary tables

	C(NH ₄) ₂ SO ₄	а	b	β	$\log(i_0)$	
30°C	40 (g/L)	2.64	0.63	0.09	-4.01	
	90 (g/L)	1.72	0.41	0.15	-4.22	
1000 rpm	130 (g/L)	1.18	0.25	0.24	-4.66	
	160 (g/L)	1.16	0.25	0.23	-4.51	

3 Table S1 The fitting Tafel constants of HER on RCC corresponding to Figure 2b

Table S2 The EIS of HER on RCC corresponding to Figure 2d

Concentration	Rs	C _{d1}	R_1	CPE _{dl}	n	R ₂
(g/L)	(Ω/cm^2)	$(\mu F/cm^2)$	(Ω/cm^2)	$(\mu F/cm^2)$	/	(Ω/cm^2)
40	7.11	26.27	21.70	42.43	0.89	158.10
90	4.25	16.04	15.52	61.62	0.90	61.15
130	3.44	33.96	15.14	61.24	0.94	26.22
160	2.19	43.61	12.23	225.9	0.96	5.16

VHT	H ₂ O and NH ₄ ⁺ are the main proton donor						
	$V: \frac{1}{2}NH_4^+ + \frac{1}{2}H_2O + e^-M \cdot H_{ads} + \frac{1}{2}OH^- + \frac{1}{2}NH_3 \ddagger k_1 + \frac{1}{k_{-1}}$	(Eq. S6)					
Reaction steps	H: $H_{ads} + \frac{1}{2}H_2O + \frac{1}{2}H^+ + e^-H_2 + \frac{1}{2}OH^- \ddagger k_{L_2} + \frac{1}{k_{L_2}}$	(Eq. S7)					
	$T: {}^{2M \cdot H_{ads}H_2} \mathbf{\hat{+}} {}^{k_{3}}_{k_{-3}} \mathbf{\hat{+}}$	(Eq. S8)					
	$r_{1} = k_{1} \cdot \left(1 - \theta_{H_{ads}}\right) \cdot \left(\frac{C_{NH_{4}}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(\frac{\alpha_{1}F\eta}{RT}\right)$	(Eq. S9)					
Reaction rate	$r_{-1} = k_{-1} \cdot \theta_{H_{ads}} \cdot \left(\frac{C_{OH}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(-\frac{(1-\alpha_1)F\eta}{RT}\right)$	(Eq. S10)					
$(mol \cdot m^{-2} \cdot s^{-1})$	$r_{2} = k_{2} \cdot \theta_{H_{ads}} \cdot \left(\frac{C_{H^{+}}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(\frac{\alpha_{2}F\eta}{RT}\right)$	(Eq. S11)					
)	$r_{-2} = k_{-2} \cdot \left(1 - \theta_{H_{ads}}\right) \cdot \left(\frac{C_{OH}^{+}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(-\frac{(1 - \alpha_2)F\eta}{RT}\right)$	(Eq. S12)					
	$r_3 = k_3 \theta^2_{Hads}$	(Eq. S13)					
	$r_{-3} = k_{-3} (1 - \theta_{Hads}^2)$	(Eq. S14)					
Reaction rate	$C_{H_{ads}} \frac{d\theta_{H_{ads}}}{dt} = r_1 - r_{-1} - r_2 + r_{-2} - r_3 + r_{-3}$	(Eq. S15)					
equations	$C\frac{dE}{dt} = j(t) - \frac{(r_1 - r_{-1} + r_2 - r_{-2})F}{n}$	(Eq. S16)					

2 Tabel S3 The elementary reaction steps of HER with VHT on RCC

1 Tabel S4 The elementary reaction steps of HER with VH on RCC

VH	$\rm H_2O$ and $\rm NH_4^+$ are the main proton donor	(Eq. S17)
Reaction	$\frac{1}{V!^{2}}NH_{4}^{+} + \frac{1}{2}H_{2}O + e^{-}M \cdot H_{ads} + \frac{1}{2}OH^{-} + \frac{1}{2}NH_{3}$ $\hat{\ddagger}_{k_{-1}}^{k_{0}}$	(Eq. S18)
steps	H: $ \begin{array}{c} M \cdot H_{ads} + \frac{1}{2}H_2O + \frac{1}{2}H^+ + e^-H_2 + \frac{1}{2}OH^- \\ \vdots \\ k_{-2} \end{array} $	(Eq. S19)
	$r_{1} = k_{1} \cdot \left(1 - \theta_{H_{ads}}\right) \cdot \left(\frac{C_{NH_{4}}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(\frac{\alpha_{1}F\eta}{RT}\right)$	(Eq. S20)
Reaction rate $(mol \cdot m^{-2} \cdot s^{-1})$	$r_{-1} = k_{-1} \cdot \theta_{H_{ads}} \cdot \left(\frac{C_{OH}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(-\frac{(1-\alpha_1)F\eta}{RT}\right)$	(Eq. 821)
)	$r_{2} = k_{2} \cdot \theta_{H_{ads}} \cdot \left(\frac{C_{H^{+}}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(\frac{\alpha_{2}F\eta}{RT}\right)$	(Eq. S22)
	$r_{-2} = k_{-2} \cdot \left(1 - \theta_{H_{ads}}\right) \cdot \left(\frac{c_{OH}}{c^{\Theta}}\right)^{1/2} \cdot exp\left(-\frac{(1 - \alpha_2)F\eta}{RT}\right)$	(Eq. S23)
Reaction rate	$C_{H_{ads}} \frac{d\theta_{H_{ads}}}{dt} = r_1 - r_{-1} - r_2 + r_{-2}$	(Eq. S24)
equations	$C\frac{dE}{dt} = j(t) - \frac{(r_1 - r_{-1} + r_2 - r_{-2})F}{n}$	(Eq. S25)

VT	$\rm H_2O$ and $\rm NH_4^+$ are the main proton donor	(Eq. S26)
Destination	$V: \frac{1}{2}NH_4^{+} + \frac{1}{2}H_2O + e^{-}M \cdot H_{ads} + \frac{1}{2}OH^{-} + \frac{1}{2}NH_3 \hat{\ddagger}_{k_{-1}}^{k} \hat{\uparrow}_{k_{-1}}^{k} \hat{\uparrow}_{k_{-1}}^{k} \hat{\uparrow}_{k_{-1}}^{k} \hat{\uparrow}_{k_{-1}}^{k} \hat{\uparrow}_{k_{-1}}^{k} \hat{\downarrow}_{k_{-1}}^{k} $	(Eq. S27)
Reaction steps	$T: \overset{M \cdot H_{ads} \stackrel{1}{=} H_2}{\longrightarrow} \stackrel{*}{\ddagger} \overset{*}{\underset{k_{-2}}{\longrightarrow}} \stackrel{*}{\rightarrow}$	(Eq. S28)
Ponotion rate	$r_{1} = k_{1} \cdot \left(1 - \theta_{H_{ads}}\right) \cdot \left(\frac{C_{NH_{4}}^{+}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(\frac{\alpha_{1}F\eta}{RT}\right)$	(Eq. S29)
$(mol \cdot m^{-2} \cdot s^{-1})$	$r_{-1} = k_{-1} \cdot \theta_{H_{ads}} \cdot \left(\frac{C_{OH}^{+}}{C^{\Theta}}\right)^{1/2} \cdot exp\left(-\frac{(1-\alpha_1)F\eta}{RT}\right)$	(Eq. S30)
)	$r_2 = k_2 \theta^2_{Hads}$	(Eq. S31)
	$r_{-2} = k_{-2} (1 - \theta_{Hads})^2$	(Eq. S32)
Reaction rate	$C_{H_{ads}} \frac{d\theta_{H_{ads}}}{dt} = r_1 - r_{-1} - r_2 + r_{-2}$	(Eq. S33)
equation	$C\frac{dE}{dt} = j(t) - \frac{(r_1 - r_{-1})F}{n}$	(Eq. S34)

1 Tabel S5 The elementary reaction steps of HER with VT on RCC

3 There, *r* is the elementary reaction rate [mol·m⁻²·s⁻¹]; *K* is the reaction rate constant
4 [mol·m⁻²·s⁻¹]; *C* is the concentration [mol·m⁻³]; *θ* is the coverage; α is the symmetry
5 coefficient; η is the overpotential [V]; R is the gas constant, 8.314 [J·mol⁻¹·K⁻¹]; T is
6 the temperature [K].

model	speed (rpm)	k ₁	k_1	k ₂	k.2	k ₃	θ_{Hads}	R ²
MIT	0	5.81×10 ⁻⁶	2.22×10 ⁻⁹	0.5005	4.52×10 ⁻⁷	0.007	0.57	0.9999
VHI	1000	7.96×10 ⁻²	8.77×10 ⁻⁹	0.9576	1.66×10 ⁻¹⁰	1.098	0.29	0.9877
	0	1.48×10-4	2.08×10-5	0.9630	1.13×10-6		5.90×10 ⁻³	0.9811
VH	1000	9.41×10 ⁻¹	0.24×10 ⁻⁶	0.9938	3.26×10 ⁻⁸		1.06×10 ⁻⁵	0.9999
	0	0.63	9.14×10 ⁻³	0.8990	0.59×10 ⁻⁶		1.27×10 ⁻⁷	0.9824
VT	1000	0.69	1.78×10 ⁻⁸	0.9117	0.73×10 ⁻⁶		6.26×10 ⁻⁹	0.9879

1 Tabel S6 The rate constants of HER on RCC corresponding to Figure 5

2 4. Supplementary References

- 3 [1] R. Creţu, A. Kellenberger, N. Vaszilcsin, Enhancement of hydrogen evolution reaction on platinum
- 4 cathode by proton carriers[J], International Journal of Hydrogen Energy 2013, 38(27), 11685-11694.
- 5 [2] Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-
- 6 wave method[J]. Physical Review B 1999, 59, 1758-177.
- 7 [3] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made
- 8 simple[J]. Physical Review Letters 1996, 77, 3865-3868.
- 9 [4] Subbaraman, R., et al. Enhancing hydrogen evolution activity in water splitting by
- 10 tailoring Li⁺ -Ni(OH)₂-Pt interfaces[J]. Science 2011, 334, 1256-1260.
- 11 [5] Jackson M N , Jung O , Lamotte H C ,et al. Donor-Dependent Promotion of
- 12 Interfacial Proton-Coupled Electron Transfer in Aqueous Electrocatalysis[J]. ACS
- 13 Catalysis, 2019, 9(4).