Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary material of "Strong anharmonicity and medium-temperature thermoelectric efficiency in antiperovskites Ca_3XN (X = P, As, Sb, Bi) compounds"

Shuyao Lin^{a,b,d}, Jincheng Yue^{c,d}, Wenling Ren^d, Chen Shen^{d,*}, Hongbin Zhang^d

^aInstitute of Materials Science and Technology, TU Wien, A-1060, Vienna, Austria ^bDepartment of Physics, Chemistry, and Biology (IFM), Linköping University, SE-58183, Linköping, Sweden ^cInstitute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, 315211, Ningbo, China

^dInstitute of Materials Science, TU Darmstadt, 64287, Darmstadt, Germany

Figure 1: Crystal orbital Hamilton population (COHP) of Ca₃XN for the nearest neighbor of bonding: (a) Ca₃PN (b) Ca₃AsN (c) Ca₃SbN (d) Ca₃BiN.

**

Email address: chenshen@tmm.tu-darmstadt.de (Chen Shen)

Preprint submitted to RSC Journal of Materials Chemistry A

June 6, 2024

Figure 2: The p-type electronic transport parameters of Ca_3XN : (a-d) Seebeck coefficient S, and (e-h) figure of merit ZT at 300, 600, and 900 K, respectively. From left to right is: Ca_3PN , Ca_3AsN , Ca_3SbN and Ca_3BiN .