Supporting Information

Dual design of electrode and electrolyte ensures flexible symmetric micro-supercapacitors with high energy density

Zhiqian Cao^{a, *}, Jingzhi Tao^a, Yudong Wu^{b, *}

^a Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, P. R. China.

^b School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of education, Anhui University, Hefei 230601, P. R. China.

Experimental Section

The synthesis of MXene nanosheets

Typically, the etching solution was prepared by adding 2.0 g LiF to 20 mL HCl (6 mol/L). Next, 1.0 g Ti₃AlC₂ MAX powder was added to the above etching solution. The mixed solution was stirred at 40 °C for 48 hours. The centrifuged product was then washed with deionised (DI) water to pH=7. After then, a multilayer $Ti_3C_2T_x$ powder was obtained after drying. 0.3 g multilayer $Ti_3C_2T_x$ powder was added into 100 mL DI water. After ultrasonic treatment for 0.5 h at 4 °C, the unstripped multilayer $Ti_3C_2T_x$ were removed via centrifugation (4000 rpm/5 minutes). Finally, a colloidal solution containing 2D MXene nanosheets (2 mg/mL) was obtained.

The preparation of ZV-AgNP-MXene film electrodes

The ZV-AgNP-MXene film was prepared using an efficient self-reducing process of silver nitrate (AgNO₃) in MXene colloidal solution. Firstly, AgNO₃ (15 mg) was dissolved into 10 mL DI water. Then, 20 mL of MXene colloidal solution (2 mg/mL) was added to the above solution and stirred for 30 minutes. The ZV-AgNP-MXene film was then obtained by filtering the above mixed solution, which was further peeled off from the filter membrane and dried for 24 hours. The Ag content of ZV-Ag-NP-MXene film is about 19% (MXene: Ag nanoparticle=40 mg: 9.5 mg). In addition, pure MXene films and highly loaded ZV-AgNP-MXene (HD-Ag-NP-MXene: ~28% Ag content) films were also prepared using the same procedure.

The preparation of PAM/1M Na₂SO₄ hydrogel electrolytes

3.0 g acrylamide (AM) was first dissolved in 20 mL Na₂SO₄ (1 mol/L) solution under stirring. After being deoxygenated for 30 minutes with nitrogen gas, 0.01 g initiator ammonium persulfate was added and stirred rapidly for 10 s. Finally, after heating at 80°C for 2 h, polyacrylamide (PAM)/Na₂SO₄ gel electrolyte was obtained.

The assembly of flexible AS-MSCs devices

Firstly, the interdigital electrodes were fabricated via laser-engraving the above obtained MXene and ZV-AgNP-MXene film electrodes. Then, the obtained MXene and ZV-AgNP-MXene interdigital electrodes were taped with double faced adhesive onto a silicone elastomer substrate (Ecoflex 00-30). After coating the obtained PAM/Na₂SO₄ hydrogel on the electrodes as the top solid electrolyte for both the ionic conductor, the AS-MSCs can be obtained. After that, the AS-MSC device units are interconnected by copper foils and further encapsulated with semi-cured silicone resin (Ecoflex 00-30, two-component mixture at the ratio of 1:1 by weight). After further curing at 45 °C for 1 h, the packaged flexible AS-MSCs devices are finally fabricated.

Electrochemical measurements.

Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were conducted using an electrochemical workstation (CHI 660E, Chenhua). The areal capacitance (Cs, mF cm⁻²) and energy density (Ws, μ Wh cm⁻²) were calculated based on the GCD curves according to the following equations:

$$C = \frac{Q}{\Delta E} = \frac{I\Delta t}{\Delta E}$$
(1)

$$C_S = \frac{C}{S} = \frac{I\Delta t}{S\Delta E}$$
(2)

$$W_{\rm S} = \frac{0.5C(\Delta E)^2}{3600s}$$
(3)

Where *C*, *Q*, *I*, Δt represents the total capacitance, total charge, discharge current, and discharge time, respectively. ΔE is the potential window during the discharge process after *IR* drop, and *S* is the total area of the film electrodes.

Material Characterizations.

The microstructure and phase composition of the film samples were characterized by fieldemission scanning electron microscopy (FE-SEM, S-8200, Hitachi, Japan), transmission electron microscopy (TEM, JEM-2100, JEOL, Japan), X-ray diffractometer (XRD, Bruker D8-ADVANCE), in-situ Raman spectroscopy (RXNI-785, RAMAN RXN SYSTEMS, Kaiser), and X-ray photoelectron spectroscopy (XPS, Mg K_{α} achromatic X-ray source).

Fig. S1 XPS patterns of MXene film.

Fig. S2 HRTEM images of ZV-AgNP-MXene nanosheets.

Fig. S3 XPS patterns of ZV-AgNP-MXene film.

Fig. S4 High-resolution XPS spectra of Ti 2p of ZV-AgNP-MXene film.

Fig. S5 High-resolution XPS spectra of C 1s of ZV-AgNP-MXene film.

Fig. S6 High-resolution XPS spectra of O 1s of ZV-AgNP-MXene film.

Fig. S7 Photograph of the colloidal solution containing ZV-AgNP-MXene nanoflakes.

Fig. S8 CV curves of the AS-MSCs based on ZV-AgNP-MXene film electrodes at different scanning rate.

Fig. S9 GCD profiles of the AS-MSCs based on HD-ZV-AgNP-MXene film electrodes at different current densities.

Fig. S10 The areal capacitance of AS-MSCs based on HD-ZV-AgNP-MXene and ZV-AgNP-MXene film electrodes.

Fig. S11 CV curves of single AS-MSCs unit and parallel-connected AS-MSCs devices.

Fig. S12 GCD profiles of single AS-MSCs unit and parallel-connected AS-MSCs devices.

Fig. S13 Cycling stability of series-connected AS-MSCs devices.