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Experimental Section 

The synthesis of MXene nanosheets 

Typically, the etching solution was prepared by adding 2.0 g LiF to 20 mL HCl (6 mol/L). 

Next, 1.0 g Ti3AlC2 MAX powder was added to the above etching solution. The mixed 

solution was stirred at 40 °C for 48 hours. The centrifuged product was then washed with 

deionised (DI) water to pH=7. After then, a multilayer Ti3C2Tx powder was obtained after 

drying. 0.3 g multilayer Ti3C2Tx powder was added into 100 mL DI water. After ultrasonic 

treatment for 0.5 h at 4 °C, the unstripped multilayer Ti3C2Tx were removed via centrifugation 

(4000 rpm/5 minutes). Finally, a colloidal solution containing 2D MXene nanosheets (2 

mg/mL) was obtained. 

The preparation of ZV-AgNP-MXene film electrodes 

The ZV-AgNP-MXene film was prepared using an efficient self-reducing process of silver 

nitrate (AgNO3) in MXene colloidal solution. Firstly, AgNO3 (15 mg) was dissolved into 10 

mL DI water. Then, 20 mL of MXene colloidal solution (2 mg/mL) was added to the above 

solution and stirred for 30 minutes. The ZV-AgNP-MXene film was then obtained by filtering 

the above mixed solution, which was further peeled off from the filter membrane and dried 

for 24 hours. The Ag content of ZV-Ag-NP-MXene film is about 19% (MXene: Ag 

nanoparticle=40 mg: 9.5 mg). In addition, pure MXene films and highly loaded ZV-AgNP-

MXene (HD-Ag-NP-MXene: ~28% Ag content) films were also prepared using the same 

procedure.

The preparation of PAM/1M Na2SO4 hydrogel electrolytes 

3.0 g acrylamide (AM) was first dissolved in 20 mL Na2SO4 (1 mol/L) solution under stirring. 

After being deoxygenated for 30 minutes with nitrogen gas, 0.01 g initiator ammonium 

persulfate was added and stirred rapidly for 10 s. Finally, after heating at 80°C for 2 h, 

polyacrylamide (PAM)/Na2SO4 gel electrolyte was obtained.
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The assembly of flexible AS-MSCs devices 

Firstly, the interdigital electrodes were fabricated via laser-engraving the above obtained 

MXene and ZV-AgNP-MXene film electrodes. Then, the obtained MXene and ZV-AgNP-

MXene interdigital electrodes were taped with double faced adhesive onto a silicone 

elastomer substrate (Ecoflex 00-30). After coating the obtained PAM/Na2SO4 hydrogel on the 

electrodes as the top solid electrolyte for both the ionic conductor, the AS-MSCs can be 

obtained. After that, the AS-MSC device units are interconnected by copper foils and further 

encapsulated with semi-cured silicone resin (Ecoflex 00-30, two-component mixture at the 

ratio of 1:1 by weight). After further curing at 45 °C for 1 h, the packaged flexible AS-MSCs 

devices are finally fabricated.

Electrochemical measurements. 

Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical 

impedance spectroscopy (EIS) measurements were conducted using an electrochemical 

workstation (CHI 660E, Chenhua). The areal capacitance (Cs, mF cm-2) and energy density 

(Ws, µWh cm-2) were calculated based on the GCD curves according to the following 

equations:
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                                                       (3)                                                                                    
Where C, Q, I, t represents the total capacitance, total charge, discharge current, and 

discharge time, respectively. ΔE is the potential window during the discharge process after IR 

drop, and S is the total area of the film electrodes.
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Material Characterizations. 

The microstructure and phase composition of the film samples were characterized by field-

emission scanning electron microscopy (FE-SEM, S-8200, Hitachi, Japan), transmission 

electron microscopy (TEM, JEM-2100, JEOL, Japan), X-ray diffractometer (XRD, Bruker 

D8-ADVANCE), in-situ Raman spectroscopy (RXNI-785, RAMAN RXN SYSTEMS, 

Kaiser), and X-ray photoelectron spectroscopy (XPS, Mg Kα achromatic X-ray source).

Fig. S1 XPS patterns of MXene film.
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Fig. S2 HRTEM images of ZV-AgNP-MXene nanosheets. 

Fig. S3 XPS patterns of ZV-AgNP-MXene film.
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Fig. S4 High-resolution XPS spectra of Ti 2p of ZV-AgNP-MXene film.

Fig. S5 High-resolution XPS spectra of C 1s of ZV-AgNP-MXene film.
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Fig. S6 High-resolution XPS spectra of O 1s of ZV-AgNP-MXene film.

Fig. S7 Photograph of the colloidal solution containing ZV-AgNP-MXene nanoflakes.
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Fig. S8 CV curves of the AS-MSCs based on ZV-AgNP-MXene film electrodes at different 

scanning rate.

Fig. S9 GCD profiles of the AS-MSCs based on HD-ZV-AgNP-MXene film electrodes at 

different current densities. 
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Fig. S10 The areal capacitance of AS-MSCs based on HD-ZV-AgNP-MXene and ZV-AgNP-

MXene film electrodes.

Fig. S11 CV curves of single AS-MSCs unit and parallel-connected AS-MSCs devices.



10

Fig. S12 GCD profiles of single AS-MSCs unit and parallel-connected AS-MSCs devices.

Fig. S13 Cycling stability of series-connected AS-MSCs devices.


