Supporting Information

Construction of Polyimide Structures Containing Iron(II) Clathrochelate Intercalators: Promising Materials for CO₂ Gas Uptake and Salient Adsorbents of lodine from the Gaseous and Liquid Phases

Suchetha Shetty,^{1,2} Noorullah Baig,^{1,2} Mikhael Bechelany,³ and Bassam Alameddine^{*1,2}

¹ Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait

² Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally32093, Kuwait

³ Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France

Tel: +965 2530 7111.

E-mail address: <u>alameddine.b@gust.edu.kw</u>

Contents

Synthesis of DAC	(i)
¹ H-NMR spectrum of DAC	Figure S1
¹³ C-NMR spectrum of DAC and ACP2,3	Figures S2-S4
FTIR spectrum of DAC and ACP2,3	Figures S5-S7
EI-MS spectrum of DAC	Figure S8
XPS spectrum of DAC and ACP2,3	Figures S9-S11
TGA thermograms of ACP1-3	Figure S12
TGA thermograms of ACP1-3@I₂	Figure S13
Kinetic studies of ACP1,2@I₂	Figures S14, S15
N_2 adsorption and desorption isotherms for	Figure S16
ACP1 recorded at 77 K	
Suggested CO ₂ adsorption mechanism by ACP3	Figure S17
Suggested I_2 adsorption mechanism by ACP3	Figure S18
Comparison of CO_2 and I_2 capture capacity with different	Tables S1, S2
adsorbents	

(i) Synthesis of DAC

To a stirring degassed solution of 4-Aminophenylboronic acid pinacol ester (1 g, 4.56 mmol, 1 eq.) in methanol (40 mL), 1,2-cyclohexanedione dioxime (0.84 g, 5.93 mmol, 1.3 eq.) and iron(II) chloride (0.26 g, 2.05 mmol, 0.45 eq.) were added under argon and the reaction mixture was allowed to reflux for 24h. The solvent was concentrated and the red solid was precipitated from petroleum ether. The precipitate was filtered and washed thoroughly with water, petroleum ether and diethyl ether then allowed to dry under vacuum affording the desired product as a red color solid (1.38 g, 99%). ¹H-NMR (400 MHz, DMSO-D₆, ppm): δ 9.89 (s, 4H, -NH₂), 7.66-7.63 (d, 4H, J=12 Hz, ArH), 7.27-7.25 (d, 4H, J = 8 Hz, ArH) 2.85 (s, 12H, -CH₂), 1.76 (s, 12H, -CH₂). ¹³C-NMR (100 MHz, DMSO-D₆, ppm): δ 168.68, 145.11, 134.15, 123.20, 109.98, 26.58 and 21.11. EI-HRMS: m/z calculated for M⁺⁺ C₃₀H₃₆B₂FeN₈O₆ 682.2288 found 682.3.

Figure S1 ¹H-NMR spectrum of DAC

Figure S2 $^{\rm 13}\text{C}\text{-NMR}$ spectrum of DAC in DMSO-D $_6$

Figure S3 Solid state ¹³C-NMR spectrum ACP2

Figure S4 Solid state ¹³C-NMR spectrum of ACP3

Figure S5 FTIR spectrum of DAC

Figure S6 FTIR spectrum of ACP2

Figure S7 FTIR spectrum of ACP3

Figure S8 EI-HRMS spectrum of DAC

Figure S9 XPS spectrum of DAC

Figure S10 XPS spectrum of ACP2

Figure S11 XPS spectrum of ACP3

Figure S12 TGA thermograms of **(a) ACP1**, **(b) ACP2** and **(c) ACP3**, T_d represents the temperature of 10% weight loss

Figure S13 TGA thermograms of (a) ACP1@ I_2 , (b) ACP2@ I_2 and (c) ACP3@ I_2

Figure S14 Pseudo-first-order (a) and pseudo-second-order (b) models of $ACP1@I_2$

Figure S15 Pseudo-first-order (a) and pseudo-second-order (b) models of ACP2@I2

Figure S16 Nitrogen (N₂) adsorption and desorption isotherms for **ACP1** recorded at 77 K

Figure S17 Suggested CO₂ adsorption mechanism by ACP3

Entry	Adsorbent	CO ₂ (mg g ⁻¹)	Reference
1	Iron(II) clathrochelate based copolymers	43	This work
2	Si-MCM-41	27.3	Xu, X, 2003, Microporous and Mesoporous Materials ¹
3	Nanoporous triptycene based network polyamides (TBP3)	38	Bera, R, 2017, Polymer ²
4	CHIT-HTC-12	4.4	Chagas, J, 2020, ACS Omega ³

Table S1 Comparison of CO_2 capture capacity with different adsorbents

Figure S18 Suggested I_2 adsorption mechanism of by ACP3

Entry	Adsorbent	I ₂ (wt.%)	Reference
1	Iron(II) clathrochelate based copolymers	680	This work
2	Hydroxyl-functionalized hyper-crosslinked polymers	673	Wang, J , 2024, iScience ⁴
3	Conjugated Microporous Polymers Based on Octet and Tetratopic Linkers	367	Luo, S, 2023, ACS Applied Materials & Interfaces ⁵
4	POP-T	394	Tian, P, 2022, Molecules ⁶
5	Metal–Organic Framework Nanosheets	351	Yu, CX, 2022, Inorganic Chemistry ⁷
6	Triazole-linked porous cage polymers	402	Begar, F, 2024, ACS Applied Polymer Materials ⁸
7	Aniline-based hypercrosslinked polymers	596	Liu, B, 2023, International Journal of Molecular Sciences ⁹
8	Triptycene based covalent organic polymers	486	Hassan, A, 2022, Chemical Engineering Journal ¹⁰
9	TAPB-QOT COP	464	Yildirim, O, 2023, ACS Appl Mater Interfaces ¹¹
10	Triazine-based covalent organic polymers (POPs-1)	441	Xiong, S, 2023, Journal of Materials Research and Technology ¹²

 Table S2 Comparison of I₂ capture capacity with different adsorbents

References

(1) Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W. Preparation and Characterization of Novel CO₂ "Molecular Basket" Adsorbents Based on Polymer-Modified Mesoporous Molecular Sieve MCM-41. Microporous and Mesoporous Materials 2003, 62 (1), 29-45. DOI: 10.1016/S1387-1811(03)00388-3.

(2) Bera, R.; Mondal, S.; Das, N. Nanoporous Triptycene Based Network Polyamides (TBPs) for Selective CO₂ Uptake. Polymer 2017, 111, 275-284. DOI: 10.1016/j.polymer.2017.01.056.

(3) Chagas, J. A. O.; Crispim, G. O.; Pinto, B. P.; San Gil, R. A. S.; Mota, C. J. A. Synthesis, Characterization, and CO₂ Uptake of Adsorbents Prepared by Hydrothermal Carbonization of Chitosan. ACS Omega 2020, 5 (45), 29520-29529. DOI: 10.1021/acsomega.0c04470.

(4) Wang, J.; Wu, T.; Wang, X.; Chen, J.; Fan, M.; Shi, Z.; Liu, J.; Xu, L.; Zang, Y. Construction of Hydroxyl-Functionalized Hyper-Crosslinked Networks from Polyimide for Highly Efficient Iodine Adsorption. iScience 2024, 27 (2), 108993. DOI: 10.1016/j.isci.2024.108993.

(5) Luo, S.; Yan, Q.; Wang, S.; Hu, H.; Xiao, S.; Su, X.; Xu, H.; Gao, Y. Conjugated Microporous Polymers Based on Octet and Tetratopic Linkers for Efficient Iodine Capture. ACS Applied Materials & Interfaces 2023, 15 (39), 46408-46416. DOI: 10.1021/acsami.3c10786.

(6) Tian, P.; Ai, Z.; Hu, H.; Wang, M.; Li, Y.; Gao, X.; Qian, J.; Su, X.; Xiao, S.; Xu, H.; et al. Synthesis of Electron-Rich Porous Organic Polymers via Schiff-Base Chemistry for Efficient Iodine Capture. Molecules, 2022, 27(16), 5161. DOI: 10.3390/molecules27165161

(7) Yu, C.-X.; Li, X.-J.; Zong, J.-S.; You, D.-J.; Liang, A.-P.; Zhou, Y.-L.; Li, X.-Q.; Liu, L.-L. Fabrication of Protonated Two-Dimensional Metal–Organic Framework Nanosheets for Highly

Efficient Iodine Capture from Water. Inorganic Chemistry 2022, 61 (35), 13883-13892. DOI: 10.1021/acs.inorgchem.2c01886.

(8) Begar, F.; Erdogmus, M.; Gecalp, Y.; Canakci, U. C.; Buyukcakir, O. Synthesis of Triazole-Linked Porous Cage Polymers: Modulating Cage Size for Tailored Iodine Adsorption. ACS Applied Polymer Materials 2024. DOI: 10.1021/acsapm.4c00560.

(9) Liu, B.; Mao, C.; Zhou, Z.; Wang, Q.; Zhou, X.; Liao, Z.; Deng, R.; Liu, D.; Beiyuan, J.; Lv, D.; et al. Two Facile Aniline-Based Hypercrosslinked Polymer Adsorbents for Highly Efficient Iodine Capture and Removal. International Journal of Molecular Sciences, 2023, 24 (1), 370 DOI: 10.3390/ijms24010370.

(10) Hassan, A.; Alam, A.; Ansari, M.; Das, N. Hydroxy Functionalized Triptycene Based Covalent
Organic Polymers for Ultra-high Radioactive Iodine Uptake. Chemical Engineering Journal 2022,
427, 130950. DOI: 10.1016/j.cej.2021.130950

(11) Yildirim, O.; Tsaturyan, A.; Damin, A.; Nejrotti, S.; Crocellà, V.; Gallo, A.; Chierotti, M. R.; Bonomo, M.; Barolo, C. Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS Appl Mater Interfaces 2023, 15 (12), 15819-15831. DOI: 10.1021/acsami.2c20853.

(12) Xiong, S.; Huang, H.; Tang, T.; Cao, X.; Zhao, H.; Li, G.; Liu, H.; Zhang, W.; Liu, Q. Creating high-affinity binding sites for efficient CO₂ and iodine vapor uptake through direct synthesis of novel triazine-based covalent organic polymers. Journal of Materials Research and Technology 2023, 27, 5629-5638. DOI: 10.1016/j.jmrt.2023.10.309

25