Supplementary Information

Design principle for anode stable solid-state electrolytes

Tan-Lien Pham¹, Lin Wang¹, Bin Ouyang^{1,*}

¹Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA *E-mail: bo22b@fsu.edu

Supporting note 1. Screened compositional spaces:

To enumerate all possible Li(Na) metal oxide perovskites (Li(Na)-PRX) with prototype formula being $\text{Li}_{r}(A, \text{Vac})_{1-r}(M_1M_2)_1O_3$, where A and M_1, M_2 are cations of different sizes. We focus on a subset of the broader perovskite family where these A sites, including mixture of Li^+ with Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Sc³⁺, In³⁺, Y³⁺, La³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Gd³⁺, Er³⁺, Eu³⁺, Dy³⁺, represent a screening of alkali and alkaline earth metals, as well as some lanthanides and transition metals, offering a range of ionic radii and charge states to tune the properties of the perovskite. The M₁, M₂ species, which include Mg²⁺, Zn²⁺, Ca²⁺, Sc³⁺, In³⁺, Ga³⁺, Al³⁺, Ge⁴⁺, Ti⁴⁺, Sn⁴⁺, Zr⁴⁺, Hf⁴⁺, Nb⁵⁺, Sb⁵⁺, Ta⁵⁺, Mo⁶⁺, W⁶⁺, Te⁶⁺, are primarily transition metals and metalloids. These elements typically have smaller ionic radii compared to the A species and occupy the octahedral sites in the perovskite structure. The overall structure of Li(Na) disordered rocksalt-type metal oxides (Li(Na)-DRX) materials with the prototype formula of Li being $\operatorname{Li}_{1+x+\delta}(M_1M_2)_{1-x}O_2$ is derived from the perovskite architecture by the choice of cations and the stoichiometry. For Li(Na) metal halides (Li(Na)-MH), we consider the following metal species M: Mg²⁺, Ca²⁺, Zn²⁺, La³⁺, Al³⁺, Ga³⁺, In³⁺, Sc³⁺, Y³⁺, Ge⁴⁺, Hf⁴⁺, Zr⁴⁺, Ti⁴⁺, Sn⁴⁺, Nb⁵⁺, Ta⁵⁺, Sb⁵⁺. Overall, we have examined of 16,644 compositions across three typical structures: 3,846 compositions for Li(Na)-PRX, 1,238 compositions for Li(Na)-DRX and 11,560 compositions for Li(Na)-MH, respectively.

Facets	$\mu_{Li/Na}$ (eV/atom)	μ_{Zn} (eV/atom)	μ_0 (eV/atom)
Li10Zn4O9-Li6ZnO4-Zn	-3.220	-1.260	-8.582
Li ₆ ZnO ₄ -Li ₂ O-Zn	-3.078	-1.260	-8.794
Li ₂ O-Zn-LiZn ₃	-2.593	-1.260	-9.764
Li ₂ O-LiZn ₃ -LiZn	-2.223	-1.383	-10.505
Li ₂ O-LiZn-Li	-1.909	-1.697	-11.132
$Na_{10}Zn_4O_9$ - Na_6ZnO_4 - $NaZn_{13}$	-1.579	-1.298	-8.821
Na ₆ ZnO ₄ -Na ₂ O-NaZn ₁₃	-1.444	-1.308	-9.021
Na ₂ O-NaZn ₁₃ -Na	-1.323	-1.318	-9.264

Table S1. The chemical potentials for all elements in facets of phase diagram for Li-Zn-O and Na-Zn-O systems.

Table S2. The formation energy of competing phases in phase diagram of Li-Zn-O and Na-Zn-O.

Competing phases	Formation energy	Competing phases	Formation energy
	(eV/atom)		(eV/atom)
$Li_{10}Zn_4O_9$	-1.992	Na ₁₀ Zn ₄ O ₉	-1.634
Li ₆ ZnO ₄	-2.036	Na ₆ ZnO ₄	-1.552
Li ₂ O	-2.062	Na ₂ O	-1.439
LiZn ₃	-0.171	NaZn ₁₃	-0.054
LiZn	-0.219		

Facets	$\mu_{Li/Na}$ (eV/atom)	μ_{Sb} (eV/atom)	μ_{Br} (eV/atom)
Sb-LiBr-Li ₂ Sb	-2.865	-4.129	-4.353
Li ₃ Sb -LiBr -Li ₂ Sb	-2.717	-4.425	-4.501
Li ₃ Sb-LiBr-Li	-1.909	-6.849	-5.355
Sb-NaBr-NaSb	-2.160	-4.129	-4.489
NaSb-NaBr-Na ₃ Sb	-1.856	-4.433	-4.793
Na ₃ Sb-NaBr-Na	-1.326	-6.034	-5.326

Table S3. The chemical potentials for all elements in facets of phase diagram for Li-Sb-Br andNa-Sb-Br.