Supplementary Materials

Oxygen Vacancy-Triggered Performance Enhancement of Toluene Oxidation over Cu Catalysts: A Combined Kinetics and Mechanistic Investigation

Xiangxue Zhang,^a Nina Fei,^a Qianhong Wang,^a Ali Raza Khan,^a Wenyao Chen,^{*a} Gang Qian,^a Jing Zhang,^a De Chen,^b Xuezhi Duan,^a Xinggui Zhou,^a and Weikang Yuan^a

^a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
^b Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway.

* Corresponding Author: <u>wenyao.chen@ecust.edu.cn</u>.

Supporting Tables

Table S1. Structural parameters of Cu foil, Cu/ZrO₂, Cu/ZnO, and

Catalysts	Shell	CN ^a	R (Å) ^b	$\sigma^2 ({ m \AA}^2)^{ m c}$	ΔE ₀ (eV) ^d	R factor ^e	
Cu foil	Cu-Cu	12	2.54±0.01	0.008±0.001	4.7±0.7	0.012	
Cu/ZrO ₂	Cu-O	3.9±0.5	1.96±0.01	0.005 ± 0.002	-2.0±1.5	0.015	
	Cu-Cu	0.6±1.2	2.57±0.05	0.010±0.017			
Cu/ZnO	Cu-O	0.8±0.6	1.84 ± 0.04	0.002 ± 0.011	2.5±2.5	0.008	
	Cu-Cu	5.5±1.3	2.53±0.02	0.006±0.002			
Cu/ Al ₂ O ₃	Cu-O	2.4±0.4	1.96±0.02	0.001±0.003	-0.2±1.8	0.020	
^a CN: coordination numbers. ^b R: bond distance. ^c σ^2 : Debye-Waller factors. ^d ΔE_0 : the							

Cu/Al₂O₃ catalysts from the EXAFS fitting.

^a CN: coordination numbers. ^o R: bond distance. ^o σ^2 : Debye-Waller factors. ^a ΔE_0 : the inner potential correction. ^e R factor: goodness of fit. S_0^2 was set to 0.864 for Cu, according to the experimental EXAFS fit of Cu foils reference by fixing CN as the known crystallographic value.

Table S2. Assignment of infrared bands appearing in the process of

Position (cm ⁻¹)	Assignment
3070, 3032	phenylic v(C-H) stretching vibration of benzene ring
2945, 2888	asymmetric and symmetric v(CH-) stretching vibrations of the methylene (C-H ₂) group
1958, 1919, 1813,	asymmetric and symmetric v(C=O) stretching vibrations of
1721, 1618	cyclic anhydrides
1597	skeletal $v(C=C)$ stretching vibrations of the aromatic ring
1530	υ(C=O) stretching vibrations of carboxylate group in benzoate species
1451	v(C=O) stretching vibrations of benzaldehyde species
1418	υ(C=O) stretching vibrations of carbonate species
1312	CH ₂ deformation vibration of benzyl species
1225	υ(CO-) stretching vibrations of phenolate species
1071	v(CO-) stretching vibrations of alkoxide species

toluene oxidation over the Cu catalysts.

Supporting Figures

Figure S1. Toluene conversion as a function of reaction temperature over

 Cu/ZrO_2 catalysts with different Cu loadings.

Figure S2. Toluene conversion as a function of reaction temperature over

Cu/ZnO catalysts with different Cu loadings.

Figure S3. Toluene conversion as a function of reaction temperature over

Cu/Al₂O₃ catalysts with different Cu loadings.

Figure S4. XRD patterns of the ZrO₂, ZnO, and Al₂O₃ supports.

Figure S5. XRD patterns of the Cu/ZrO₂, Cu/ZnO, and Cu/Al₂O₃

catalysts.

Figure S6. (a) HAADF-STEM images of the Cu/ZrO₂ catalyst and (b) the corresponding histogram of the particle size distributions.

Figure S7. (a) HAADF-STEM images of the Cu/ZnO catalyst and (b) the

corresponding histogram of the particle size distributions.

Figure S8. (a) HAADF-STEM images of the Cu/Al_2O_3 catalyst and (b)

the corresponding histogram of the particle size distributions.

Figure S9. Fourier transforms of the experimental and fitted EXAFS spectra of Cu foil at Cu K-edge.

Figure S10. Fourier transforms of the experimental and fitted EXAFS spectra of the Cu/ZrO₂ catalyst at Cu K-edge.

Figure S11. Fourier transforms of the experimental and fitted EXAFS spectra of the Cu/ZnO catalyst at Cu K-edge.

Figure S12. Fourier transforms of the experimental and fitted EXAFS spectra of the Cu/Al₂O₃ catalyst at Cu K-edge.

Figure S13. The EXAFS oscillation functions at the Cu K-edge of Cu foil, Cu/ZrO₂, Cu/ZnO, and Cu/Al₂O₃ catalysts.

Figure S14. FID spectrogram analysis of toluene oxidation.

Figure S15. TCD spectrogram analysis of toluene oxidation.

Figure S16. Toluene conversion as a function of reaction time over the

Cu/ZrO₂ catalyst at 300 °C.