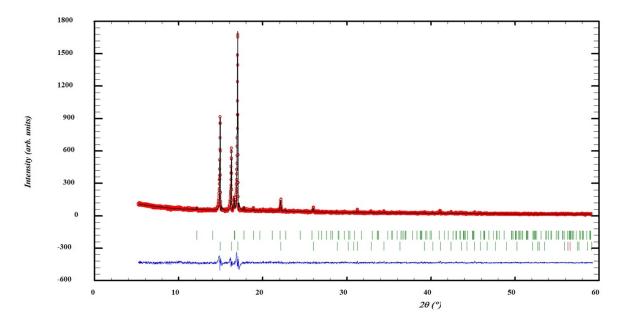
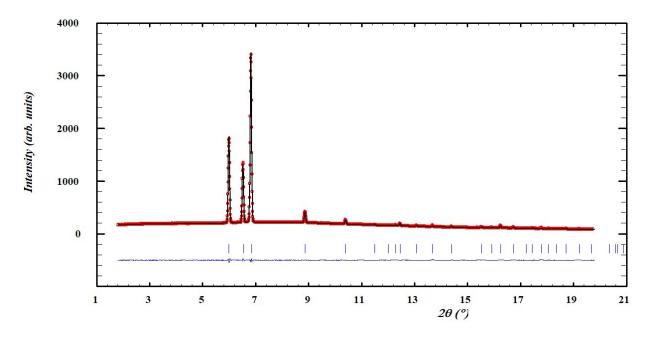

Sodium Decahydrido-*Closo*-1-Carbadecaborate as a Solid Electrolyte: New Insight into Polymorphism and Electrochemical Performance

Therese S. S. Kjær¹, Jakob B. Grinderslev¹, Lasse N. Skov¹, Torben R. Jensen¹


Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

* Corresponding author: trj@chem.au.dk


Supporting Information

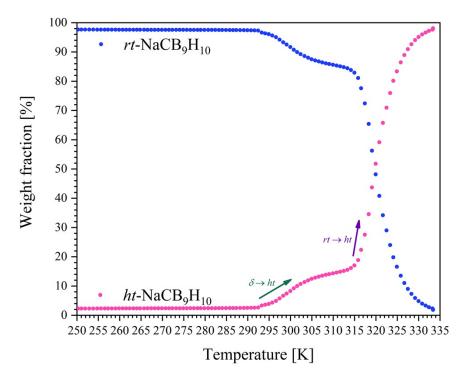
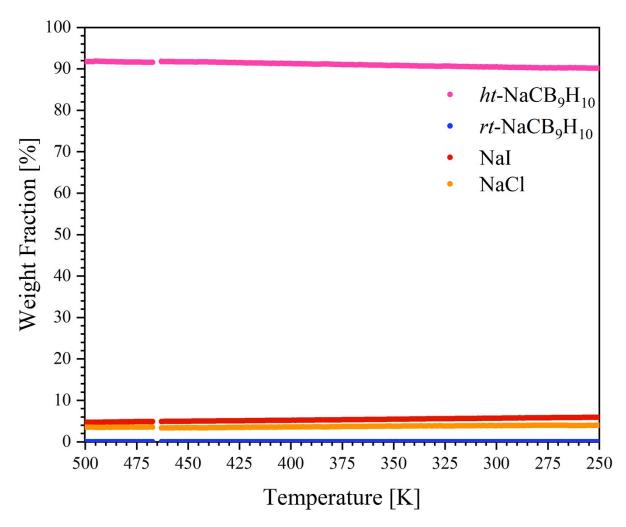

Figure S1. Rietveld refinement of SR-PXRD data of NaCB₉H₁₀ (**s1**) showing experimental (red circles) and calculated (black line) PXRD patterns, and a difference plot below (blue line) (T = 272 K, $\lambda = 0.619689$ Å). Green tick marks from top to bottom: rt-NaCB₉H₁₀, ht-NaCB₉H₁₀, NaI, NaCl. Final discrepancy factors: R_p = 2.25 %, R_{wp} = 3.57 % (not corrected for background), R_p = 10.5 %, R_{wp} = 9.54 % (conventional Rietveld R-factors). Mass fractions: rt-NaCB₉H₁₀ (22.4 wt%), ht-NaCB₉H₁₀ (69.7 wt%), NaI (4.8 wt%) and NaCl (3.1 wt%).

Figure S2. Rietveld refinement of PXRD data of as-synthesized *ht*-NaCB₉H₁₀ (s2) showing experimental (red circles) and calculated (black line) PXRD patterns, and a difference plot below (blue line) (T = 294 K, $\lambda = 1.5405$ Å). Green tick marks from top to bottom: rt-NaCB₉H₁₀, ht-NaCB₉H₁₀. Final discrepancy factors: R_p = 10.9 %, R_{wp} = 9.60 % (not corrected for background), R_p = 46.8 %, R_{wp} = 11.2 % (conventional Rietveld R-factors). Mass fractions: rt-NaCB₉H₁₀ (12.0 wt%), ht-NaCB₉H₁₀ (88.0 wt%).


Figure S3. Rietveld refinement of SR-PXRD data of *ht*-NaCB₉H₁₀ (**s2**) showing experimental (red circles) and calculated (black line) PXRD patterns, and a difference plot below (blue line) (T = 294 K, $\lambda = 0.6199$ Å). Blue tick marks: *ht*-NaCB₉H₁₀. Final discrepancy factors: R_p = 0.859 %, R_{wp} = 1.47 % (not corrected for background), R_p = 4.37 %, R_{wp} = 4.28 % (conventional Rietveld R-factors), R_{Bragg}(*ht*-NaCB₉H₁₀) = 1.63 % and global $\chi^2 = 83.8$.

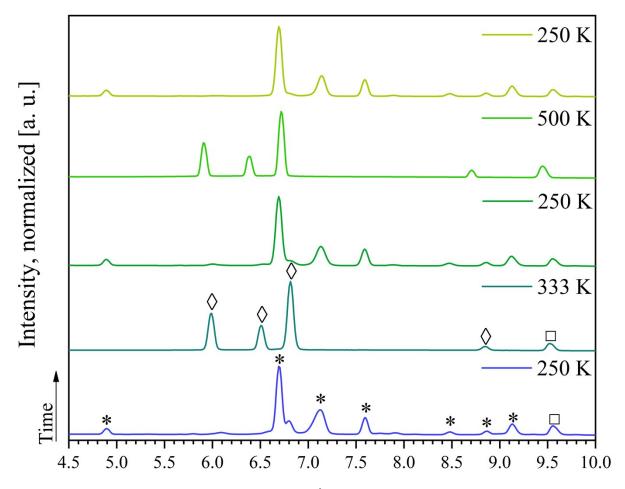

Figure S4. Relative weight fractions of crystalline *rt*- (blue) and *ht*-NaCB₉H₁₀ (pink) is extracted by Rietveld refinement of SR-PXD data measured of NaCB₉H₁₀ (**s1**) during the initial heating, see Figure 2 ($\Delta T/\Delta t = 5$ K min⁻¹). The amount of δ -NaCB₉H₁₀ in the sample is estimated to 12.8 wt% and used to rescale the fraction of crystalline material. The green arrow marks the initiation of the formation of crystalline *ht*-NaCB₉H₁₀ from δ -NaCB₉H₁₀, the purple arrow marks the initiation of the polymorphic transition from *rt*- to *ht*-NaCB₉H₁₀.

Figure S5. In situ SR-PXRD of the subsequent cooling of NaCB₉H₁₀ (s1), i.e. a continuation of the diffraction experiment shown in Figure 2 ($\lambda = 0.619689$ Å, $\Delta T/\Delta t = 5$ K min⁻¹ from 500 to 467 K, and $\Delta T/\Delta t = 6$ K min⁻¹ from 463 to 250 K). Symbols: *ht*-NaCB₉H₁₀ (\Diamond), NaI (\Box).

Figure S6. Crystalline weight fraction of *rt*- (blue), *ht*-NaCB₉H₁₀ (pink), NaI (red) and NaCl (orange) extracted by Rietveld refinement of SR-PXRD data (shown in Figure S4).

Figure S7. SR-PXRD of NaCB₉H₁₀ (**s1**) ($\lambda = 0.619689$ Å) at different temperatures. This sample was used for the measurement shown in Figure 2, however the capillary was moved such that a "new" spot on the sample was exposed to the X-rays. Symbols: *rt*-NaCB₉H₁₀ (*), *ht*-NaCB₉H₁₀ (\Diamond), NaI (\Box).

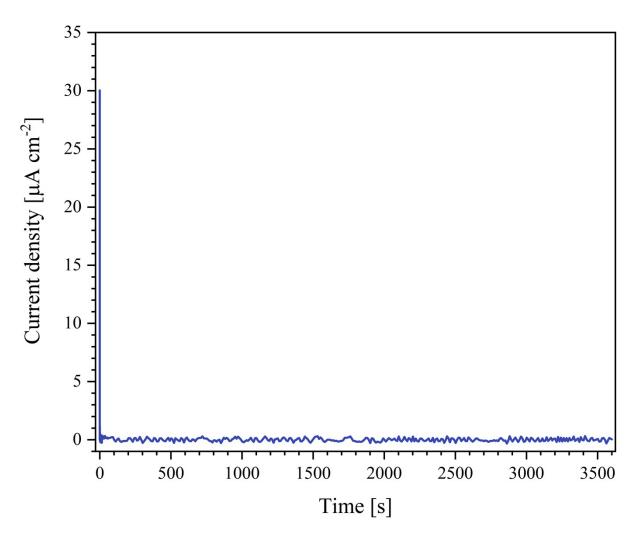
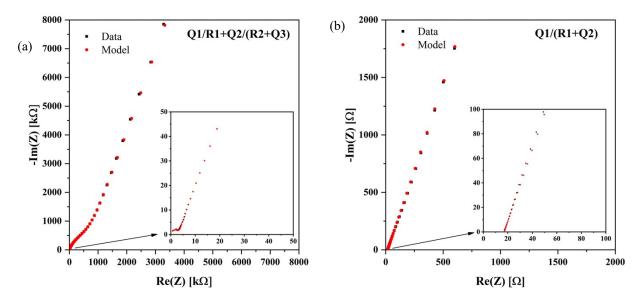
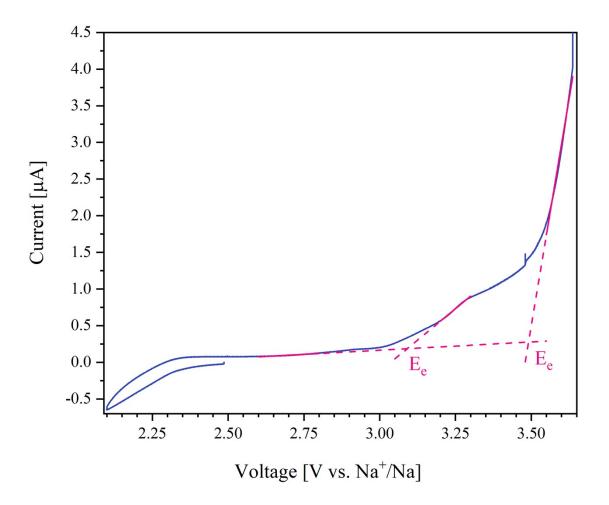




Figure S8. A symmetric SS $|NaCB_9H_{10}$ (s2)|SS cell to determine the ionic transport number, t_{ion} .

Figure S9. Nyquist plots and the corresponding equivalent circuit fits of $NaCB_9H_{10}$ (s1) measured at room temperature before heating (a) and after the first heating cycle (b). The data before heating displays two semicircles, attributed to the presence of both *rt*-NaCB₉H₁₀ and *ht*-NaCB₉H₁₀ in the as-synthesized sample. Only a single conducting phase is present after the initial phase transition to *ht*-NaCB₉H₁₀ at T > 333 K and the semicircle is no longer observed due to the low resistance in *ht*-NaCB₉H₁₀.

Figure S10. Linear sweep voltammetry showed two anodic peaks for $NaCB_9H_{10}$ (**s2**), one with an edge potential of 3.1 V and a larger peak with an edge potential of 3.5 V. At 3.6 V the current increased rapidly skewing the edge potential to a larger value if included.

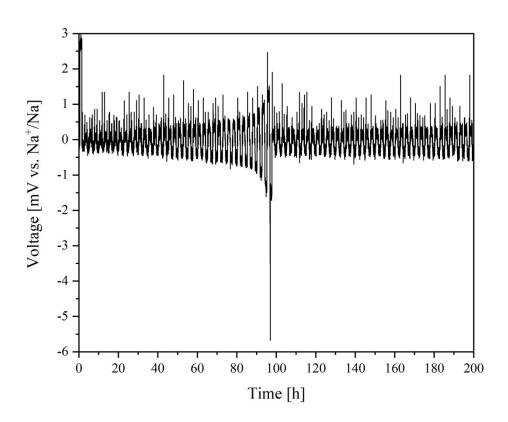
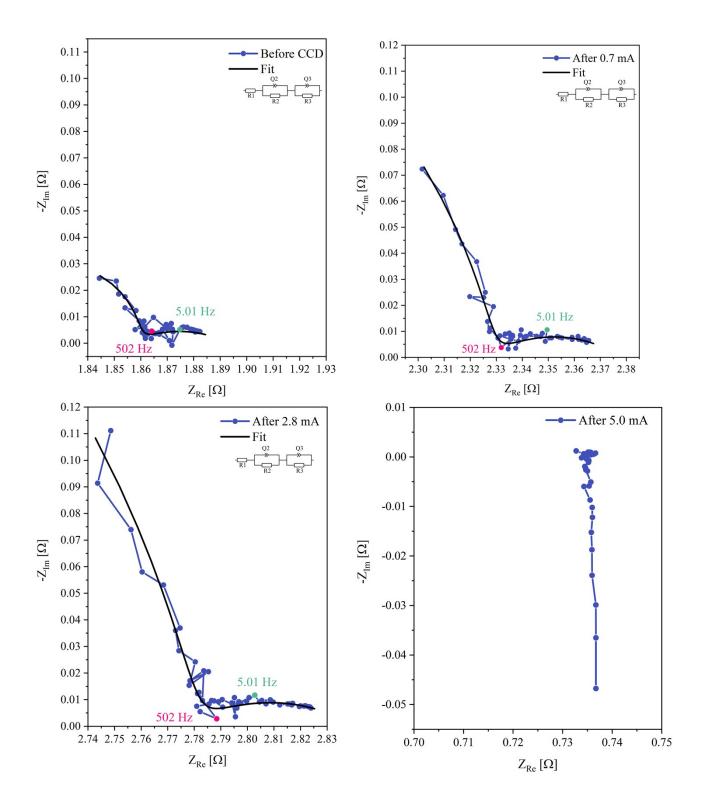



Figure S11. Precycling of Na $|NaCB_9H_{10}(s1)|Na$ cell used for critical current density measurement conducted at T = 303 K and 0.2 mA cm⁻² for 80 cycles.

Figure S12. Nyquist plot of EIS measurements throughout the investigation of critical current density, raw data (blue) fitted (black) with R1+Q2/R2+Q3/R3. R1 is ascribed as the internal resistance of the cell, R2 is associated with the interface between the solid electrolyte and the electrodes, R3 is ascribed as a low frequency resistance.

Tabel S1. Fitted resistance from Nyquist plot of EIS measurements (Figure S9) throughout the investigation of critical current density.

	Before CCD $[\Omega]$	After 0.7 mA $[\Omega]$	After 2.8 mA $[\Omega]$
R1	1.799	1.914	2.029
R2	0.05659	0.4126	0.7481
R3	0.03714	0.05091	0.06319