SUPPLEMENTARY INFORMATION

High entropy spinel oxide nanoparticles for visible light-assisted photocatalytic degradation of binary mixture of antibiotics in different water matrixes

Shubhasikha Das^a, Sudhir Kumar^b, Suman Sarkar^c, Debabrata Pradhan^b, Chandra Sekhar Tiwary^{d*}, Shamik Chowdhury^{a*},

^aSchool of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India

^bMaterials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India

^cDepartment of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, India

^dDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India

^{*} Corresponding author.

E-mail address: chandra.tiwary@metal.iitkgp.ac.in (C. S. Tiwary) shamikc@iitkgp.ac.in (S. Chowdhury)

Parameters	Unit	DI	TW	GW	SW	MWW	HWW	PWW	T-MWW	Methodology
рН		6.5	7.7	7.1	6.9	6.7	7.2	4.17	6.11	IS 3025 (Part 11), 1983 APHA (<i>23rd edition</i>), 4500 H ⁺ B
Turbidity	NTU	_	1.4	2.2	7.2	72.8	23.5	3.4	1.9	IS 3025 (Part 10), 1984 APHA (<i>23rd edition</i>), 2130 B
Total dissolved solid (TDS)	mg L ⁻¹	_	155	_	146	395	255	9129	320	IS 3025 (Part 16), 1984 APHA (<i>23rd edition</i>), 2540C
Total suspended solid (TSS)	mg L ⁻¹	_	2.2	56	51	88	46	22	7.3	IS 3025 (Part 17), 1984 APHA (<i>23rd edition</i>), 2540 D
Biological oxygen demand (BOD)	mg L ⁻¹	_	3.5	6	8	206	124	15	15	IS 3025 (Part 44), 1993
Chemical oxygen demand (COD)	mg L^{-1}	_	5.3	81	34	172	61	532	76	APHA (23 rd edition), 5220 B
Chloride (Cl ⁻)	${ m mg}~{ m L}^{-1}$	_	32	5	41	56	81	58	65	IS:3025 (Part 32), 1988 APHA (<i>23rd edition</i>), 4500 Cl ⁻ B
Nitrate (NO ₃ ⁻)	mg L ⁻¹	_	8	7.8	12	42	52	21	14	APHA (23 rd edition), 3500 NO_3^-
Bicarbonate (HCO ₃ ⁻) as	mg L ⁻¹	_	57	26	64	218	276	_	13	APHA (23 rd edition), 2320 B

Table S1 Basic characteristics of the various real water matrixes.

CaCO ₃										
Sulpahte (SO ₄ ²⁻)	$mg \ L^{-1}$	_	17	5.2	21	44	31	28	23	IS:3025(Part 24), 1986
										APHA (23 rd edition), 4500 $SO_4^{2-} E$
Phosphate (PO ₄ ^{3–}) as P	mg L ⁻¹	_	0.6	_	51	49	57	382	2	APHA (23 rd edition), 4500 PO_4^{3-} D

Sample	SSA ($m^2 g^{-1}$)
 FeCoNiCuZn	19
(FeCoNiCuZn) _a O _b _250	23
(FeCoNiCuZn) _a O _b _350	40
(FeCoNiCuZn) _a O _b _450	54
(FeCoNiCuZn) _a O _b _550	67

Table S2 Specific surface area of FeCoNiCuZn and $(FeCoNiCuZn)_aO_b NPs$, as determined bythe multipoint Brunauer–Emmett–Teller method.

Sample	Fe	Co	Ni	Cu	Zn	0
(FeCoNiCuZn) _a O _b _250	12.55	11.33	11.26	14.23	10.40	40.23
(FeCoNiCuZn) _a O _b _350	11.90	11.03	10.55	13.95	9.14	43.43
(FeCoNiCuZn) _a O _b _450	11.23	10.65	10.28	12.19	8.97	46.68
(FeCoNiCuZn) _a O _b _550	10.44	9.99	9.61	11.10	8.31	50.55

Table S3 Elemental composition (at.%) of (FeCoNiCuZn)_aO_b NPs based on EDS analysis.

Photocatalyst Irradiance type Degradation Reference C_0 Time Dose k $(mg L^{-1})$ $(\times 10^{-3} \text{ min}^{-1})$ (min) $(g L^{-1})$ (%) Sulfamethoxazole ZnO 90 0.3 20 10.2 10 Visible light 1 Cu₂O 0.4 Visible light 48 30 3 2 _ Fe₂O₃ 10 90 0.3 Visible light 52 1 _ 10 1.2 89 CuFeS₂– dendritic mesoporous 140 Visible light 14.6 3 silica-titania/persulfate N-SrTiO₃/NH₄V₄O₁₁ 50 120 2.0 Visible light 91 13.2 4 Co-CuS@TiO₂ Visible light 100 21.6 5 120 0.25 5 N-ZnO/C@ Bi₂MoO₆ 5 120 1.0 Visible light 93 25.1 6 FeCoNiCuZn 0.5 Visible light 94 19.5 5 120 7 MnFeCoNiCu 5 120 0.5 Visible light 95 22 8 (FeCoNiCuZn)_aO_b 550 5 90 0.5 Visible light 97 31.9 This study

Table S4 Comparison of the photocatalytic performance of $(FeCoNiCuZn)_aO_b_550$ NPs for degradation of SMX and OFX with contemporary semiconductor-based photocatalysts.

Ofloxacin							
WO ₃	10	240	0.25	UV(c) light	50	2.2	9
α-Fe ₂ O ₃	20	60	0.1	Visible light	56	14.0	10
ZnO	30	180	0.25	Visible light	57	8.2	11
Cu-doped TiO ₂	10	180	0.45	Visible light	72	4.5	12
Bi/Ni co-doped TiO ₂	25	360	1.5	Visible light	86	6.2	13
Bi ₂ MoO ₆ -rGO-TiO ₂	$4 \times 10^{-5} \mathrm{M}$	120	0.4	Visible light	92	17.4	14
BiFeO ₃ /Bi-g-C ₃ N ₄	10	90	0.25	Visible light	96	34.4	15
MnFeCoNiCu	5	120	0.5	Visible light	94	21	8
(FeCoNiCuZn) _a O _b _550	5	90	0.5	Visible light	95	26.7	This study

Intermediate	m/z	Molecular formula	Chemical structure	Chemical name
S1	276	$C_9H_{13}N_3O_5S$	о н он	4-amino- <i>N</i> -(4,5- dihydroxy-4,5- dihydroisoxazol-3- yl)cyclohexa-1,3- diene-1-sulfonamide
S8	177	$C_4H_6N_2O_4S$		4-hydroxybenzene- 1-sulfonamide
S3	171	$C_6H_8N_2O_2S$	H _z N	4-amino benzenesulfonamide
S4	118	$C_4H_6O_4$	о он о	succinic acid
S5	156	C ₆ H ₇ NO ₂ S		4-sulfonylcyclohex- 2-en-1-imine
S6	99	C ₄ H ₆ N ₂ O	H ₂ N	5-methylisoxazol-3- amine
S7	127	$C_4H_4N_2O_3$	O ₂ N	5-methyl-3- nitroisoxazole
S8	122	C ₄ H ₉ NO ₃	HO OH	(E)-1-aminobut-2- ene-1,2,3-triol
S9	102	C ₄ H ₇ NO ₂	H ₂ N OH	(Z)-2-hydroxybut-2- enamide

Table S5 Major intermediates formed during photocatalytic degradation of SMX over
 $(FeCoNiCuZn)_aO_b_550$ NPs, as detected through LCMS.

Intermediate	m/z	Molecular formula	Chemical structure	Chemical name
01	349	C ₁₇ H ₁₈ FN ₃ O ₄		9-fluoro-3-methyl- 7-oxo-10- (piperazin-1-yl)- 3,7-dihydro-2 <i>H</i> - [1,4]oxazino[2,3,4- <i>ij</i>]quinoline-6- carboxylic acid
O2	327	$C_{17}H_{17}N_3O_4$		3-methyl-7-oxo-10- (piperazin-1-yl)- 3,7-dihydro-2 <i>H</i> - [1,4]oxazino[2,3,4- <i>ij</i>]quinoline-6- carboxylic acid
O3	290	C ₁₅ H ₁₆ FN ₃ O ₂		9-fluoro-10- (piperazin-1-yl)- 2,3-dihydro-7 <i>H</i> - [1,4]oxazino[2,3,4- <i>ij</i>]quinolin-7-one
O4	251	$C_{13}H_{15}FN_2O_2$	P P OH	7-(dimethylamino)- 1-ethyl-6-fluoro-8- hydroxyquinolin- 4(1 <i>H</i>)-on
O5	235	$C_{13}H_{16}N_2O_2$	OH N	7-(dimethyl amino)-1-ethyl-8- hydroxyquinolin-4 (1 <i>H</i>)-one
O6	177	C ₁₀ H ₁₃ NO ₂		2-(ethy l(methyl)amino)-3- hydroxybenzaldehy de

Table S6 Major intermediates formed during photocatalytic degradation of OFX over
 $(FeCoNiCuZn)_aO_b_550$ NPs, as detected through LCMS.

07	211	C ₁₀ H ₁₁ FN ₂ O ₂	H ₂ N F	8-amino-7-fluoro- 3-methyl-3,4- dihydro-2 <i>H</i> - benzo[b][1,4] oxazine- 5carbaldehyde
08	148	C ₇ H ₁₅ FN ₂	F	1-(2-fluoroethyl)-4- methylpiperazine
O9	101	$C_{5}H_{12}N_{2}$	N N N N N N	1-methylpiperazine
O10	127	$C_5H_8N_2O_2$	NH2	2-formyl-3- iminobutanamide
011	117	$C_4H_4O_4$	HO O O O O O H	(E)-2-formyl-3- hydroxyacrylic acid
012	87	C ₅ H ₁₃ N		<i>N</i> -ethyl- <i>N</i> - methylethanamine
013	73	$C_3H_4O_2$	ОН	acrylic acid

	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
SMX	5	280	245	125	10
OFX	BDL*	220	289	245	85

Table S7 Leached metal ion concentration (in $\mu g L^{-1}$) after photocatalytic degradation of SMX and OFX over (FeCoNiCuZn)_aO_b_550 NPs under visible light irradiation.

*BDL: Below detection limit

Figure S1 Particle size distributions of (a) $(FeCoNiCuZn)_aO_b_250$ NPs, (b) $(FeCoNiCuZn)_aO_b_350$ NPs, (c) $(FeCoNiCuZn)_aO_b_450$ NPs, and (d) $(FeCoNiCuZn)_aO_b_550$ NPs.

Figure S2 (a) XPS survey scan and the deconvoluted high-resolution (b) Fe 2p (c) Co 2p, (d) Ni 2p, (e) Cu 2p, and (g) Zn 2p spectra of pristine FeCoNiCuZn NPs.

Figure S3 Kubelka–Munk plots of (a) FeCoNiCuZn NPs, (b) $(FeCoNiCuZn)_aO_b_250$ NPs, (c) $(FeCoNiCuZn)_aO_b_350$ NPs, and (d) $(FeCoNiCuZn)_aO_b_450$ NPs for estimating the bandgap energy.

Figure S4 Digital images illustrating the results of agar-well diffusion assay for toxicity assessment of $(FeCoNiCuZn)_aO_b_550$ NPs (a), with PBS as negative control (b) and CFX as positive control (c).

Figure S5 Digital images illustrating the magnetic separation of $(FeCoNiCuZn)_aO_b_550$ NPs from aqueous solution.

Figure S6 (a) Comparison of the XRD patterns of $(FeCoNiCuZn)_aO_b_550$ NPs before and after three consecutive photocatalytic runs. (b) XPS survey scan and the deconvoluted high-resolution (c) Fe 2p (d) Co 2p, (e) Ni 2p, (f) Cu 2p, (g) Zn 2p, and (h) O 1s spectra of $(FeCoNiCuZn)_aO_b_550$ NPs after three consecutive photocatalytic runs.

References

- 1 P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D. V. N. Vo, N. AlMasoud, M. Naushad and Z. A. ALOthman, *Environ. Res.*, 2021, **197**, 111074.
- 2 K. Sekar, C. Chuaicham, B. Vellaichamy, W. Li, W. Zhuang, X. Lu, B. Ohtani and K. Sasaki, *Appl. Catal. B Environ.*, 2021, **294**, 120221.
- 3 T. S. Ntelane, U. Feleni, N. H. Mthombeni and A. T. Kuvarega, J. Colloid Interface Sci., 2024, 654, 660–676.
- 4 Y. Zhang, Y. Li and Y. Yuan, J. Colloid Interface Sci., 2023, 645, 860–869.
- 5 O. Mertah, A. Gómez-Avilés, A. Slassi, A. Kherbeche, C. Belver and J. Bedia, *Catal. Commun.*, 2023, **175**, 106611.
- 6 A. Wang, J. Ni, W. Wang, X. Wang, D. Liu and Q. Zhu, *J. Hazard. Mater.*, 2022, **426**, 128106.
- 7 S. Das, M. Sanjay, A. R. Singh Gautam, R. Behera, C. S. Tiwary and S. Chowdhury, J. Environ. Manage., 2023, 342, 118081.
- 8 S. Das, M. Sanjay, S. Kumar, S. Sarkar, C. S. Tiwary and S. Chowdhury, *Chem. Eng. J.*, 2023, **476**, 146719.
- 9 J. Piriyanon, P. Takhai, S. Patta, T. Chankhanittha, T. Senasu, S. Nijpanich, S. Juabrum, N. Chanlek and S. Nanan, *Opt. Mater.*, 2021, **121**, 111573.
- H. Alamgholiloo, N. Noroozi Pesyan and A. Poursattar Marjani, Sep. Purif. Technol., 2023, 305, 122442.
- 11 H. Cai, J. Wang, Z. Du, Z. Zhao, Y. Gu, Z. Guo, Y. Huang, C. Tang, G. Chen and Y. Fang, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2023, 663, 131050.
- 12 R. Kaur, A. Kaur, R. Kaur, S. Singh, M. S. Bhatti, A. Umar, S. Baskoutas and S. K. Kansal, *Adv. Powder Technol.*, 2021, **32**, 1350–1361.
- 13 V. Bhatia, A. K. Ray and A. Dhir, Sep. Purif. Technol., 2016, 161, 1–7.
- 14 A. Raja, N. Son and M. Kang, *Environ. Res.*, 2021, **199**, 111261.
- 15 S. H. Ammar, F. D. Ali, H. J. Hadi and Z. H. Jabbar, *Mater. Sci. Semicond. Process.*, 2024, **171**, 108026.