Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1

Supplementary Information

2 A Transparent and Robust Ionogel Prepared via Phase 3 Separation for Sensitive Strain Sensing

- 4 Jinliang Xie^{1&}, Xiaoqian Li^{2&}, Jiayu Liu¹, Fangfang Su¹, Ruiqi Gao³, Changming Zhang³, Jiahe
- 5 Liang², Gang Ji^{*3}, Dongdong Yao^{*1}, Yaping Zheng¹
- 6 ¹ School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an,
- 7 Shaanxi 710072, P. R. China;
- 8 ² 3D Printing Research Center, Department of Ultrasonic Medicine, Tang Du Hospital, Air Force
- 9 Medical University, No.569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China.
- 10³ Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi
- 11 710032. P. R. China.
- 12 * Corresponding authors. E-mail: yaodd@nwpu.edu.cn (Dongdong Yao), jigang@fmmu.edu.cn
- 13 (Gang Ji).
- 14
- 15 Table of Contents
- 16 1. Supplementary Note

17 2. Supplementary Figures

- 18 Figure S1. The XRD curves of the P(DMAAm_x-co-AM_y) ionogels.
- 19 Figure S2. Structure models of P(DMAAm_x-co-AM_y) ionogels with anneal and dynamic optimized based on
- 20 MD calculation.
- 21 Figure S3. 2D correlation asynchronous spectra of the P(DMAAm_x-co-AM_y) ionogels.
- 22 Figure S4. Rheology analyses of P(DMAAm₄₀-co-AM₆₀) ionogel.

- 23 Figure S5. Viscosity-frequency curves of the precursor solution.
- 24 Figure S6. The tensile stress-strain curves of P(DMAAm₄₀-co-AM₆₀) ionogel after being placed in different
- 25 relative humidity environments for 24 hours.
- 26 Figure S7. The conductivity of P(DMAAm₄₀-co-AM₆₀) ionogel after being placed in different relative
- 27 humidity environments for 24 hours.
- 28 Figure S8. The process of programmed box-shaped P(DMAAm₄₀-co-AM₆₀) ionogel regaining its initial shape
- 29 under heating conditions.
- 30 Figure S9. Photographs of E. coli bacterial colonies upon treatment with P(DMAAm_x-co-AM_y) ionogel.

31 3. Supplementary tables

- 32 Table S1. Transparency and characteristic temperature of the P(DMAAm_x-co-AM_y) ionogels.
- 33 Table S2. Mechanical properties of the P(DMAAm_x-co-AM_y) ionogels.
- 34 Table S3. The mechanical properties of reported high strength gel materials.
- 35 Table S4. Tensile properties and conductivity of P(DMAAm₄₀-co-AM₆₀) ionogel under different humidity
- 36 environments.
- 37 Table S5. Comparison of sensing performance of gel-based flexible strain sensors.
- 38 4. Reference
- 39

40 Supplementary Note 1

Antibacterial activity: E. coli (ATCC25922, Gram-negative) were used to evaluate the antibacterial performances of the composite ionogels. Bacteria were cultured in Luria-Bertani (LB) broth at 37 °C, with continuous shaking at 150 rpm overnight, and then diluted for further use. Briefly, 100 μL bacterial suspension (10⁵ CFU/mL) was spread on the agar plate, followed by the addition of the composite ionogels and incubation at 37 °C for 24 h. Subsequently, the agar plate was incubated at 37 °C for 24 h and then the diameter of the inhibition zone around the hydrogel was measured.

49

50 Figure S1. The XRD curves of the $P(DMAAm_x-co-AM_y)$ ionogels.

52 **Figure S2.** Structure models of $P(DMAAm_x$ -*co*- $AM_y)$ ionogels with anneal and dynamic optimized

54 (c) P(DMAAm₄₀-co-AM₆₀) ionogel, (d) P(DMAAm₆₀-co-AM₄₀) ionogel, (e) P(DMAAm₈₀-co-

55 AM₂₀) ionogel, (f) P(DMAAm₁₀₀-co-AM₀) ionogel.

⁵³ based on MD calculation. (a) $P(DMAAm_0-co-AM_{100})$ ionogel, (b) $P(DMAAm_{20}-co-AM_{80})$ ionogel,

57 Figure S3. 2D correlation asynchronous spectra of the P(DMAAm₄₀-co-AM₆₀) ionogel.

59 Figure S4. Rheology analyses of P(DMAAm₄₀-co-AM₆₀) ionogel. (a) Modulus-frequency

60 relationship curves, (b) Modulus-temperature relationship curves.

61

56

62 Figure S5. Viscosity-frequency curves of the precursor solution.

Figure S6. The tensile stress-strain curves of P(DMAAm₄₀-*co*-AM₆₀) ionogel after being placed
in different relative humidity environments for 24 hours, (a) dry environment, (b) 40%, (c) 50%,
(d) 60%.

67

68 Figure S7. The conductivity of P(DMAAm40-co-AM60) ionogel after being placed in different

⁶⁹ relative humidity environments for 24 hours.

72

73 Figure S8. The process of programmed box-shaped P(DMAAm₄₀-co-AM₆₀) ionogel regaining its

74 initial shape under heating conditions.

75

76

78 ionogel.

```
Additionally, E. coli (ATCC25922, Gram-negative) were used to evaluate the antibacterial
performances of the P(DMAAm<sub>40</sub>-co-AM<sub>60</sub>) ionogel. The ionogel samples of a certain volume were
placed onto solid nutrient agar coated with a suspension of E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours and
Additionally, E. coli bacteria at 37 °C for 12 hours at 37 °C
```


Sample	Transparency (%)	T _g (°C) ^a	Т _d (°С) ^b	T _{d fast} (°C) ^c
P(DMAAm ₀ -co-AM ₁₀₀)	89.6	>60	263	311
P(DMAAm ₂₀ -co-AM ₈₀)	90.5	50.7	263	318
P(DMAAm ₄₀ -co-AM ₆₀)	94.0	26.2	263	310
P(DMAAm ₆₀ -co-AM ₄₀)	95.2	9.4	263	315
P(DMAAm ₈₀ -co-AM ₂₀)	96.5	-2.2	263	321
P(DMAAm ₁₀₀ -co-AM ₀)	98.3	<-40	263	311

Table S1. Transparency and characteristic temperature of the P(DMAAm_x-co-AM_y) ionogels.

a. T_g represents the glass transition temperature; b. T_d represents the decomposition temperature; c. T_{d fast} represents

the fastest decomposition temperature.

87 Table S2. Mechanical properties of the P(DM	MAAm _x - <i>co</i> -AM _y) ionogels.
---	--

Sample	Tensile strength (MPa)	Elongation at break (%)	Modulus (MPa)	Toughness (MJ/m ³)
$P(DMAAm_0-co-AM_{100})$	11.83	6.82	152.70	0.56
$P(DMAAm_{20}-co-AM_{80})$	9.07	297.07	127.83	21.46
$P(DMAAm_{40}-co-AM_{60})$	8.94	404.46	51.55	21.95
$P(DMAAm_{60}-co-AM_{40})$	5.55	614.18	5.44	15.44
$P(DMAAm_{80}-co-AM_{20})$	2.25	1262.10	0.31	11.64
$P(DMAAm_{100}$ -co- $AM_0)$	0.113	1319.06	0.0245	0.65

NT.	Strength	Modulus	Toughness	T
INU.	(MPa)	(MPa)	(MJ·m ⁻³)	гуре
1	3.64	0.46	27.60	Hydrogel ¹
2	5.60	1.30		Hydrogel ²
3	3.10	0.60	8.65	Hydrogel ³
4	1.36	0.49		Hydrogel ⁴
5	2.00		22.00	Hydrogel ⁵
6	2.70	1.17	10.80	Hydrogel ⁶
7	2.20	0.27		Hydrogel ⁷
8	2.70	0.82	8.50	Hydrogel ⁸
9	9.30	277.00	0.40	Hydrogel ⁹
10	20.20	16.10	62.70	DES gel ¹⁰
11	3.19	2.35		DES gel ¹¹
12	5.19	0.20		PU-IL ionogel ¹²
13	2.52	1.43	2.55	PU-IL ionogel ¹³
14	22.00		109.80	PU-IL ionogel ¹⁴
15	4.99	1.71		PU-IL ionogel ¹⁵
16	1,65	0.28		PU-IL ionogel ¹⁶
17	9.15	1.12	178.46	BC ionogel ¹⁷
18	3.70	2.46	6.25	Organic-inorganic ionogel ¹⁸
19	0.23	0.04		PILs ionogel ¹⁹
20	2.28	2.28		PILs ionogel ²⁰
21	15.00	82.81		PILs ionogel ²¹
22	12.60	46.50		P(AA-co-AM) ionogel ²²
23	7.12	0.94		P(IBA-co-MEA) ionogel ²³
24	0.37	0.42	21.80	PAA/CNF ionogel ²⁴
25	14.30	55.00	78.00	PDMAA ionogel ²⁵
26	0.90	15.60	2.48	PSHM ionogel ²⁶
27	4.80	0.48		PEA ionogel ²⁷
28	7.60	58.00	25.00	PDMAA/MOF ionogel ²⁸
29	5.00		7.40	P(AA-co-HFBA) ionogel 29
30	0.80	1.05	5.52	P(AA-co-ZDMA) ionogel ³⁰
31	11.70	72.20	37.50	PVDF-co-HFP ionogel ³¹
32	4.70			BP@PVP ionogel ³²
33	21.00	325.00	102	P(AA-co-AM)/Zn ²⁺ ionogel ³³

Table S3. The mechanical properties of reported high strength gel materials.

92	humidity environments.			
	Humidity	Tensile strength	Elongation at break	Conductivity
	(%)	(MPa)	(%)	(mS·cm ⁻¹)
	0	8.94	404.46	0.192
	40	0.420	1456	0.872
	50	0.051	>3500	1.682
	60	0.038	>3300	2.749

91 Table S4. Tensile properties and conductivity of P(DMAAm₄₀-co-AM₆₀) ionogel under different

	Stretcl	nability		
Gel	Tensile strain Tensile strength(kPa)		Gauge factor	Ref.
PAM/SF/GO/PEDOT:PSS hydrogel	600%	N/A	0.8(0–50%) 1.6(50-400%) 0.6(400%-600%)	34
GA/rGO/PAM hydrogel	2094%	118.7	2.496(0-40%) 3.957(40-100%) 15.467(100-1000%)	35
PVA-G-PDA-AgNPs hydrogel	331%	1174	0.937(0–70%) 0.13(>70%)	36
PAA/CS/GO/Gly hydrogel	>1000%	N/A	1.138(0–80%) 4.7(>80%)	37
PAA/PDA-rGO/Fe ³⁺ hydrogel	>600%	400	1.32(100-500%)	38
PVA/SA/MXene hydrogel	263%	~100	0.97(0-100%)	39
MXene nanocomposite organohydrogel	~1000%	~50	5.02(0-200%) 44.85(200-350%)	40
PAM/carrageenan/Eg/Gl organohydrogel	N/A	N/A	1.9(0-200%) 6(250-400%)	41
P(AA-co-AM)/PDA-CNTs/Gl organohydrogel	~800	~50	N/A	42
PVA/DMSO/rGO/GO organohydrogel	~600%	3100	2.21(0-600%)	43
PVA/PEDOT:PSS organohydrogel	~700%	~2100	N/A	44
PVA/PANI organohydrogel	458%	477	2.14(0-100%)	45
P(VDF-co-HFP)/P(MMA-co-BMA) ionogel	307%	2310	1.62(0-150%)	46
P(MEA-co-MTMA/TFSI) ionogel	1440%	1100	0-7.3(0-400%)	47
P(MEA-co-IBA) ionogel	1400%	7120	2.02 (1%) 2.02-4(1-100%) 4-6(100-200%)	23
PAA/CNF/IL/H ₂ O ionogel	11760%	~200	0-9.8(0-2000%)	24
PDMAA/Zn ²⁺ ionogel	N/A	14300	2.8(0-200%) 6.2(250-600%) 9.2(600-900%)	25
P(DMAAm-co-AM) ionogel	404%	8940	2.73(0-10%) 0.67(10-200%)	This work

94 Table S5. Comparison of sensing performance of gel-based flexible strain sensors.

95 Reference

96	1.	N. Yuan, L. Xu, H. Wang, Y. Fu, Z. Zhang, L. Liu, C. Wang, J. Zhao and J. Rong, ACS Appl.
97		Mater. Inter., 2016, 8, 34034-34044.
98	2.	Y. Yang, X. Wang, F. Yang, L. Wang and D. Wu, Adv. Mater., 2018, 30, 1707071.
99	3.	S. X. Pan, M. Xia, H. H. Li, X. L. Jiang, P. X. He, Z. G. Sun and Y. H. Zhang, J. Mater. Chem.
100		<i>C</i> , 2020, 8 , 2827-2837.
101	4.	S. H. Li, H. Y. Pan, Y. T. Wang and J. Q. Sun, J. Mater. Chem. A, 2020, 8, 3667-3675.
102	5.	T. Nakajima, Y. Fukuda, T. Kurokawa, T. Sakai, U. I. Chung and J. P. Gong, ACS Macro Lett.,
103		2013, 2 , 518-521.
104	6.	L. J. Zhou, X. J. Pei, K. Fang, R. Zhang and J. Fu, Polymer, 2020, 192, 122319.
105	7.	J. Wen, X. Zhang, M. Pan, J. Yuan, Z. Jia and L. Zhu, Polymers, 2020, 12, (1), 239.
106	8.	Y. Zhang, M. Y. Li, X. Han, Z. W. Fan, H. H. Zhang and Q. L. Li, Chem. Phys. Lett., 2021, 769,
107		138437.
108	9.	H. P. Yu and Y. J. Zhu, Nano Res., 2021, 14, 3643-3652.
109	10.	H. Zhang, N. Tang, X. Yu, M. H. Li and J. Hu, Adv. Funct. Mater., 2022, 32, 2206305.
110	11.	Q. Wu, S. Han, J. Zhu, A. Chen, J. Zhang, Z. Yan, J. Liu, J. Huang, X. Yang and L. Guan, Chem.
111		<i>Eng. J.</i> , 2023, 454 , 140328.
112	12.	M. W. Zhang, R. Yu, X. L. Tao, Y. Y. He, X. P. Li, F. Tian, X. Y. Chen and W. Huang, Adv.
113		Funct. Mater., 2022, 33 , 2208083.
114	13.	T. Li, Y. Wang, S. Li, X. Liu and J. Sun, Adv. Mater., 2020, 32, 2002706.
115	14.	P. Liu, D. F. Pei, Y. P. Wu, M. J. Li, X. H. Zhao and C. X. Li, J. Mater. Chem. A, 2022, 10,
116		25602-25610.
117	15.	H. Wang, J. Xu, K. Li, Y. Dong, Z. Du and S. Wang, J Mater. Chem. B, 2022, 10, 1301-1307.
118	16.	L. Yang, L. Sun, H. Huang, W. Zhu, Y. Wang, Z. Wu, R. E. Neisiany, S. Gu and Z. You, Adv Sci,
119		2023, 10, 2207527.
120	17.	G. D. Fan, K. K. Liu, H. Su, Y. Q. Luo, Y. Geng, L. Y. Chen, B. J. Wang, Z. P. Mao, X. F. Sui
121		and X. L. Feng, Chem. Eng. J., 2022, 434, 134702.
122	18.	L. Yu, S. Guo, Y. Lu, Y. Li, X. Lan, D. Wu, R. Li, S. Wu and X. Hu, Adv. Energy Mater., 2019,
123		9 , 1900257.
124	19.	Y. Zhao, D. L. Gan, L. C. Wang, S. Y. Wang, W. J. Wang, Q. Wang, J. J. Shao and X. C. Dong,
125		<i>Adv. Mater. Tech.</i> , 2023, 8 , 2201566.
126	20.	Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu and F Yan. Sci. Adv., 2019, 5, 0648.
127	21.	Z. Yu and P. Wu, <i>Adv. Mater.</i> , 2021, 33 , 2008479.
128	22.	M. Wang, P. Zhang, M. Shamsi, J. L. Thelen, W. Qian, V. K. Truong, J. Ma, J. Hu and M. D.
129		Dickey, <i>Nat. Mater.</i> , 2022, 21 , 359-365.
130	23.	B. Yiming, Y. Han, Z. Han, X. Zhang, Y. Li, W. Lian, M. Zhang, J. Yin, T. Sun, Z. Wu, T. Li, J.
131		Fu, Z. Jia and S. Qu, <i>Adv. Mater.</i> , 2021, 33 , 2006111.
132	24.	Y. H. Ye, H. Oguzlu, J. Y. Zhu, P. H. Zhu, P. Yang, Y. L. Zhu, Z. M. Wan, O. J. Rojas and F.
133		Jiang, Adv. Funct. Mater., 2023, 33, 2209787.
134	25.	L. Li, W. Li, X. Wang, X. Zou, S. Zheng, Z. Liu, Q. Li, Q. Xia and F. Yan, Angew. Chem. Int. Ed.
135		<i>Engl.</i> , 2022, 61 , e202212512.

136	26.	K. G. Cho, S. An, D. H. Cho, J. H. Kim, J. Nam, M. Kim and K. H. Lee, Adv. Funct. Mater.,
137		2021, 31 , 2102386.
138	27.	Z. Q. Cao, H. L. Liu and L. Jiang, Mater. Horiz., 2020, 7, 912-918.
139	28.	Q. Xia, W. Li, X. Zou, S. Zheng, Z. Liu, L. Li and F. Yan, Mater Horiz, 2022, 9, 2881-2892.
140	29.	J. Chen, Y. Wang, L. Li, Y. E. Miao, X. Zhao, X. P. Yan, C. Zhang, W. Feng and T. Liu, ACS
141		Appl. Mater. Inter., 2023, 15, 16109-16117.
142	30.	S. Hao, C. Yang, X. Yang, T. Li, L. Ma, Y. Jiao and H. Song, ACS Appl. Mater. Inter., 2023, 15,
143		16132-16143.
144	31.	W. Q. Zhan, H. Q. Zhang, X. Lyu, Z. Z. Luo, Y. Yu and Z. G. Zou, Sci. China Mater., 2023, 66,
145		1539-1550.
146	32.	X. F. Xiao, H. D. Zhao, P. J. Yan, H. F. Zhang, X. H. Liu, X. Jia and S. P. Jin, J. Mater. Chem.
147		<i>A</i> , 2023, 11 , 6616-6626.
148	33.	Z. K. Huang, Y. T. Chen, J. P. Peng, T. R. Huang, F. Q. Hu, X. Liu, L. G. Xu and K. Yue, J.
149		Mater. Chem. A, 2023, 11, 7201-7212.
150	34.	F. He, X. You, H. Gong, Y. Yang, T. Bai, W. Wang, W. Guo, X. Liu and M. Ye, ACS Appl.
151		Mater. Inter., 2020, 12, 6442-6450.
152	35.	X. Zheng, Y. Gao, X. Ren and G. Gao, J Mater. Chem. C, 2021, 9, 3343-3351.
153	36.	L. Fan, J. Xie, Y. Zheng, D. Wei, D. Yao, J. Zhang and T. Zhang, ACS Appl. Mater. Inter., 2020,
154		12 , 22225-22236.
155	37.	S. Xia, S. Song, Y. Li and G. Gao, J Mater. Chem. C, 2019, 7, 11303-11314.
156	38.	X. Jing, H. Y. Mi, X. F. Peng and L. S. Turng, Carbon, 2018, 136, 63-72.
157	39.	T. Wang, J. Wang, Z. Li, M. Yue, X. Qing, P. Zhang, X. Liao, Z. Fan and S. Yang, <i>J Appl. Polym.</i>
158		<i>Sci.</i> , 2021, 139, 51627.
159	40.	H. Liao, X. L. Guo, P. B. Wan and G. H. Yu, Adv. Funct. Mater., 2019, 29, 1904507.
160	41.	J. Wu, Z. Wu, X. Lu, S. Han, B. R. Yang, X. Gui, K. Tao, J. Miao and C. Liu, ACS Appl. Mater.
161		Inter., 2019, 11, 9405-9414.
162	42.	L. Han, K. Liu, M. Wang, K. Wang, L. Fang, H. Chen, J. Zhou and X. Lu, Adv. Funct. Mater.,
163		2017, 28 , 1704195.
164	43.	H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu, B. Huang, J. Bai, J. Guo, X. Yang and L. Guan, J. Mater.
165		<i>Chem. A</i> , 2021, 9 , 23243-23255.
166	44.	Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou and M. Liu, Angew. Chem. Int. Ed. Engl., 2017, 56,
167		14159-14163.
168	45.	C. X. Hu, Y. L. Zhang, X. D. Wang, L. Xing, L. Y. Shi and R. Ran, ACS Appl. Mater. Inter.,
169		2018, 10 , 44000-44010.
170	46.	J. Lan, Y. Li, B. Yan, C. Yin, R. Ran and LY. Shi, ACS Appl. Mater. Inter., 2020, 12, 37597-
171		37606.
172	47.	C. He, S. Sun and P. Wu, Mater. Horiz., 2021, 8, 2088-2096.
173		
174		