## **Supplementary Information**

## Guidelines for designing high-deformability materials for all-solid-state lithium-ion batteries

Naoto Tanibata, \*a Shin Aizu, a Misato Koga, a Hayami Takeda, a Ryo Kobayashi b and Masanobu Nakayama a

<sup>a.</sup> Department of Advanced Ceramics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan.

<sup>b</sup> Department of Applied Physics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan.

\*Corresponding Author. E-mail: tanibata.naoto@nitech.ac.jp



**Fig. S1.** XRD patterns of the four materials synthesised in this study ( $Li_2CrCl_4$ ,  $Li_{10}Mg_7Cl_{24}$ ,  $Li_2CoCl_4$ , and  $Li_3PS_4$ ). The peaks for all four materials are consistent with those listed in the inorganic crystal structure database (ICSD), confirming that the target materials were successfully synthesised.



**Fig. S2.** Characterisation of pellets of the chlorides  $Li_4Mn_3Cl_{10}$ ,  $Li_2FeCl_4$ , and  $LiAlCl_4$ . (a) AC impedance results (Nyquist plots). (b) DRT spectra. The pie chart shows the relative magnitudes of the crystallite grain boundary resistance  $R_{cgb}$  and particle grain boundary resistance  $R_{pgb}$ . (c) Cross-sectional SEM images of the pellets; the relative densities are indicated. (d) Equivalent circuit used for fitting.



Fig. S3. Cross-sectional SEM images of  $Li_2CrCl_4$ ,  $Li_4Mn_3Cl_{10}$ ,  $Li_2FeCl_4$ ,  $Li_2CoCl_4$ , and  $Li_{10}Mg_7Cl_{24}$  powders.



**Fig. S4.** Diffusion coefficients of the chloride materials ( $Li_{10}Mg_7Cl_{24}$ ,  $LiAlCl_4$ ,<sup>1</sup>  $Li_4Mn_3Cl_{10}$ ,<sup>2</sup>  $Li_2FeCl_4$ ,<sup>3</sup>  $Li_2CoCl_4$ , and  $Li_2CrCl_4$ ) computationally screened in this study, and typical oxide ( $LiCoO_2$ ,<sup>4</sup>  $LiFePO_4$ ,<sup>5</sup> and  $LiMn_2O_4$ ) and sulfide ( $TiS_2$ <sup>7</sup> and  $MoS_2$ ) cathode materials. The chloride materials generally exhibit higher Li diffusivity than the typical oxide and sulfide cathode materials. Moreover, the chloride materials exhibit even larger Li chemical diffusion coefficients because those calculated from ionic conductivity assuming a thermodynamic factor of unity are often underestimated.



**Fig. S5.** Characterisation of pellets of the sulfide Li<sub>3</sub>PS<sub>4</sub> and oxides Li<sub>2</sub>SO<sub>4</sub>, Li<sub>2</sub>CO<sub>3</sub>, and Li<sub>3</sub>BO<sub>3</sub>. (a) AC impedance results (Nyquist plots). Measurements for Li<sub>2</sub>SO<sub>4</sub> and Li<sub>3</sub>BO<sub>3</sub> were performed at an elevated temperature (100 °C) owing to their high resistivity. (b) DRT spectra. The pie chart shows the ratio of crystallite grain boundary resistance  $R_{cgb}$  and particle grain boundary resistance  $R_{pgb}$ . (c) Cross-sectional SEM images of the pellets; the relative densities are indicated.



Fig. S6. Cross-sectional SEM images of the sulfide  $Li_3PS_4$  and oxide  $Li_2SO_4$ ,  $Li_2CO_3$ , and  $Li_3BO_3$  powders.



**Fig. S7.** Relationship among volumetric modulus *B*, relative density of the pellets, and ratio of particle grain boundary resistance to the total grain boundary resistance, *Q*, for the nine materials, including the six chlorides that were the focus of this study, that is,  $Li_2CoCl_4$ ,  $Li_2CrCl_4$ ,  $Li_{10}Mg_7Cl_{24}$ ,  $Li_4Mn_3Cl_{10}$ ,  $Li_2FeCl_4$ , and  $LiAlCl_4$ , as well as the oxides  $Li_2SO_4$ ,  $Li_2CO_3$ , and  $Li_3BO_3$  and the sulfide  $Li_3PS_4$ .



**Fig. S8.** Mean square displacement (MSD) plots from a representative Li-chloride molecular dynamics calculation (LiAlCl<sub>4</sub>, mp-22983) performed using a high-throughput force field.<sup>9</sup> (a) MSD plot at 500 K obtained without fixing the anion positions. (b) MSD plots at 500 K obtained with the anion positions fixed. (c) MSD plot at 1000 K obtained with the anion positions fixed. (d) Arrhenius plots of diffusion coefficients obtained via molecular dynamics calculations using a high-throughput force field for a representative example of an LiCl material (Li<sub>10</sub>Mg<sub>7</sub>Cl<sub>24</sub>, mp-530738). Red data points indicate the results of calculations at 300, 400, and 500 K obtained without fixing the anion positions. The blue data points show the results of calculations performed at 500, 750, 1000, 1250, and 1500 K obtained with the anion positions fixed.

## Supplementary note: Li diffusivity evaluation via molecular dynamics (MD) simulations

In this study, molecular dynamics (MD) simulations were performed with the skeletal structure fixed, that is, the coordinates of the chlorides were fixed. This was because the melting points of chloride materials are low; therefore, the skeletal structure may collapse at the high temperatures commonly utilised in MD calculations. For example, Fig. S8 shows the results of MD simulations for LiAlCl<sub>4</sub>. The melting point of LiAlCl<sub>4</sub> is 433 K. As can be observed in the mean square displacement (MSD) plot, LiAlCl<sub>4</sub> melts at 500 K with chlorine diffusion (Fig. S8(a)). Moreover, the frequency of Li diffusion events may not be sufficient to obtain statistics for calculating the Li diffusion coefficient at temperatures below 430 K. Therefore, the anion structure was fixed, and the Li diffusion coefficient was calculated via MD simulations at high temperatures. Fig. S8(c) shows the MSD plot from the MD calculation at 1000 K. Although no diffusion was observed for any element at 500 K (Fig. S8(b)), Li alone was observed to diffuse at 1000 K. The Li ion conductivity at 298 K calculated from the extrapolation of the Arrhenius plot in the high-temperature region with the ion positions fixed was  $5.9 \times$  $10^{-7}$  S cm<sup>-1</sup>, which is close to the experimental value (1 × 10<sup>-6</sup> S cm<sup>-1</sup>). Furthermore, in the Arrhenius plot of the Li<sub>10</sub>Mg<sub>7</sub>Cl<sub>24</sub> (mp-530738) diffusion coefficient (Fig. S6(d)), the straight line for the data obtained with the anion positions fixed is almost identical to that for the data obtained without fixing the anion positions. This indicates that fixing the anion positions does not significantly affect the diffusion coefficient. Therefore, in this study, the MD simulations were performed at five temperatures (500, 750, 1000, 1250, and 1500 K) with the chloride ion positions fixed. The Li diffusion coefficients were calculated from the MSD slopes of other samples. Samples with an MSD slope of

almost zero, even at 1500 K, were considered to have zero ionic conductivity.

| Material id | Chemical formula                                                | $D_{\mathrm{Li},RT}  \mathrm{[cm^2  s^{-1}]}$ | <i>E</i> <sub>Hull</sub> [eV atom <sup>-1</sup> ] | G [GPa]     |  |  |  |
|-------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------|--|--|--|
| mp-998591   | LiSnCl <sub>3</sub>                                             | $1.55 \times 10^{-36}$                        | 0.008448336                                       | 5.461882569 |  |  |  |
| mp-998230   | LiSnCl <sub>3</sub>                                             | $1.12 \times 10^{-17}$                        | 0.018967877                                       | 6.755421796 |  |  |  |
| mp-989583   | Rb <sub>2</sub> LiInCl <sub>6</sub>                             | $4.08 \times 10^{-11}$                        | 0                                                 | 12.00356415 |  |  |  |
| mp-989579   | Rb <sub>2</sub> LiTlCl <sub>6</sub>                             | 9.14 × 10 <sup>-13</sup>                      | 0.015591515                                       | 12.70132622 |  |  |  |
| mp-989512   | LiTl <sub>2</sub> InCl <sub>6</sub>                             | $2.47 \times 10^{-10}$                        | 0                                                 | 14.51342755 |  |  |  |
| mp-686087   | Li <sub>3</sub> (Nb <sub>2</sub> Cl <sub>5</sub> ) <sub>8</sub> | $3.09 \times 10^{-11}$                        | 0.012968019                                       | -           |  |  |  |
| mp-686004   | Li3ScCl <sub>6</sub>                                            | $1.16 \times 10^{-17}$                        | 0.012203                                          | 12.72936733 |  |  |  |
| mp-685992   | Li <sub>2</sub> CrCl <sub>4</sub>                               | $5.65 \times 10^{-9}$                         | 0.073214274                                       | 12.92982901 |  |  |  |
| mp-680167   | LiMo <sub>6</sub> Cl <sub>13</sub>                              | $1.25 \times 10^{-7}$                         | 0.01127676                                        | 2.976522323 |  |  |  |
| mp-677135   | Li <sub>2</sub> CoCl <sub>4</sub>                               | 0                                             | 1.648672956                                       | 20.28624775 |  |  |  |
| mp-676752   | Li <sub>2</sub> FeCl <sub>4</sub>                               | 5.11 × 10 <sup>-9</sup>                       | 0.202861054                                       | 6.430357728 |  |  |  |
| mp-676683   | Li <sub>2</sub> FeCl <sub>4</sub>                               | 8.77 × 10 <sup>-9</sup>                       | 0.031559694                                       | 10.68975814 |  |  |  |
| mp-676361   | Li3ErCl <sub>6</sub>                                            | $3.50 \times 10^{-17}$                        | 0                                                 | 14.43590228 |  |  |  |
| mp-676210   | LiTiCl <sub>3</sub>                                             | 6.89 × 10 <sup>-11</sup>                      | 0.095064055                                       | -20.4548349 |  |  |  |
| mp-676109   | Li <sub>3</sub> InCl <sub>6</sub>                               | 5.31 × 10 <sup>-23</sup>                      | 0                                                 | 12.51176384 |  |  |  |
| mp-675460   | LiTiCl <sub>3</sub>                                             | $1.87 \times 10^{-7}$                         | 0.27596539                                        | 17.30447897 |  |  |  |
| mp-606711   | Cs3LiCl <sub>4</sub>                                            | 8.73 × 10 <sup>-7</sup>                       | 0.059343854                                       | 8.416746373 |  |  |  |
| mp-571666   | CsLi <sub>3</sub> Cl <sub>4</sub>                               | $2.58 \times 10^{-21}$                        | 0.028389297                                       | 10.7010079  |  |  |  |
| mp-571612   | LiW <sub>6</sub> CCl <sub>18</sub>                              | 0                                             | 0.012219054                                       | -           |  |  |  |
| mp-571527   | Cs <sub>2</sub> LiInCl <sub>6</sub>                             | $2.62 \times 10^{-9}$                         | 0                                                 | 10.28838333 |  |  |  |
| mp-571390   | Cs <sub>2</sub> LiCl <sub>3</sub>                               | 3.63 × 10 <sup>-21</sup>                      | 0.024857768                                       | 9.841205638 |  |  |  |
| mp-570869   | LiNb <sub>3</sub> InCl <sub>9</sub>                             | $2.48 \times 10^{-18}$                        | 0.002247427                                       | 10.41429913 |  |  |  |
| mp-570512   | LiWCl <sub>6</sub>                                              | $7.54 \times 10^{-14}$                        | 0.012143757                                       | -           |  |  |  |
| mp-569117   | CsLi <sub>2</sub> Cl <sub>3</sub>                               | $4.60 \times 10^{-9}$                         | 0.019124206                                       | 9.933433151 |  |  |  |
| mp-567652   | Cs <sub>2</sub> LiYCl <sub>6</sub>                              | $4.67 	imes 10^{-6}$                          | 0                                                 | 12.45602124 |  |  |  |
| mp-567474   | Li <sub>2</sub> CrCl <sub>4</sub>                               | 6.57 × 10 <sup>-9</sup>                       | 0.049856652                                       | 13.63073846 |  |  |  |
| mp-532443   | Li <sub>5</sub> V <sub>5</sub> Cl <sub>16</sub>                 | $2.49 \times 10^{-8}$                         | 0.180230588                                       | 11.18693553 |  |  |  |
| mp-531376   | Li <sub>4</sub> Mn <sub>3</sub> Cl <sub>10</sub>                | 5.45 × 10 <sup>-8</sup>                       | 0.00403793                                        | 11.77195623 |  |  |  |
| mp-530738   | Li <sub>10</sub> Mg <sub>7</sub> Cl <sub>24</sub>               | 4.35 × 10 <sup>-8</sup>                       | 0.020200601                                       | 12.71821553 |  |  |  |
| mp-505391   | Li <sub>6</sub> CoCl <sub>8</sub>                               | $1.05 \times 10^{-31}$                        | 0.030864541                                       | 19.90232217 |  |  |  |

**Table S1.** Calculated values of Li diffusion coefficient  $D_{\text{Li},RT}$ , energy above hull  $E_{\text{Hull}}$ , and shear modulus *G* for each of the Li–Cl compounds.

| mp-38684   | Li <sub>2</sub> MgCl <sub>4</sub>                 | $4.10 \times 10^{-11}$   | 0.006588491 | 12.76243794  |
|------------|---------------------------------------------------|--------------------------|-------------|--------------|
| mp-38008   | Li <sub>2</sub> CdCl <sub>4</sub>                 | $8.22 	imes 10^{-6}$     | 0.010504225 | 11.08787898  |
| mp-36330   | Li <sub>2</sub> VCl <sub>4</sub>                  | $2.03 	imes 10^{-10}$    | 0.011353206 | 12.39279916  |
| mp-34457   | Li <sub>2</sub> CoCl <sub>4</sub>                 | 6.91 × 10 <sup>-11</sup> | 0.141976284 | 18.731053    |
| mp-34148   | Li <sub>2</sub> MnCl <sub>4</sub>                 | 8.66 × 10 <sup>-15</sup> | 0.006057414 | 11.91999236  |
| mp-29985   | LiNb <sub>6</sub> Cl <sub>19</sub>                | $1.96 \times 10^{-17}$   | 0           | 5.889648047  |
| mp-29582   | Li <sub>2</sub> CrCl <sub>4</sub>                 | $1.91 \times 10^{-10}$   | 0.046454547 | 10.3183314   |
| mp-29344   | LiGaCl <sub>3</sub>                               | $5.83 \times 10^{-18}$   | 0           | 10.35414277  |
| mp-29250   | Li <sub>6</sub> VCl <sub>8</sub>                  | 0                        | 0.012617101 | 19.91762251  |
| mp-28828   | Li <sub>6</sub> FeCl <sub>8</sub>                 | $2.60 	imes 10^{-14}$    | 0.092345903 | 19.03395232  |
| mp-28463   | LiNb <sub>3</sub> Cl <sub>8</sub>                 | $1.72 \times 10^{-9}$    | 0           | 12.25143066  |
| mp-28341   | LiGaCl <sub>4</sub>                               | $9.24 \times 10^{-10}$   | 0           | 4.231483787  |
| mp-28243   | RbLiCl <sub>2</sub>                               | $2.30 	imes 10^{-18}$    | 0.002885881 | 9.422648507  |
| mp-28122   | LiGdCl <sub>4</sub>                               | 0                        | 0.00259213  | 10.43546087  |
| mp-28068   | LiDy <sub>2</sub> Cl <sub>5</sub>                 | $1.96 \times 10^{-19}$   | 0.190573681 | 15.61583524  |
| mp-23416   | Li <sub>2</sub> ZnCl <sub>4</sub>                 | $4.41 \times 10^{-15}$   | 0.012703998 | 12.51940231  |
| mp-23364   | CsLiCl <sub>2</sub>                               | $6.16 \times 10^{-7}$    | 0.012217325 | 8.678754387  |
| mp-23361   | Li <sub>5</sub> CrCl <sub>8</sub>                 | $1.45 \times 10^{-8}$    | 0.011215566 | 15.582161    |
| mp-22983   | LiAlCl <sub>4</sub>                               | 1.54 × 10 <sup>-11</sup> | 0           | 4.947485309  |
| mp-22980   | Li <sub>2</sub> CoCl <sub>4</sub>                 | 5.72 × 10 <sup>-12</sup> | 0.017858303 | 17.37988247  |
| mp-22961   | Li <sub>2</sub> ZnCl <sub>4</sub>                 | 0                        | 0.017143571 | 16.64195843  |
| mp-1222796 | Li <sub>2</sub> CoCl <sub>4</sub>                 | $4.74 	imes 10^{-10}$    | 0.156567239 | 20.73531746  |
| mp-1222745 | Li <sub>2</sub> FeCl <sub>4</sub>                 | 0                        | 0.1518639   | 12.77729035  |
| mp-1211124 | Li <sub>6</sub> NiCl <sub>8</sub>                 | $6.22 \times 10^{-17}$   | 0           | 20.11273463  |
| mp-1210931 | LiFeCl <sub>4</sub>                               | $1.39 \times 10^{-9}$    | 0           | 5.778377258  |
| mp-1210835 | Li <sub>2</sub> BeCl <sub>4</sub>                 | $6.47 	imes 10^{-15}$    | 0.00851579  | 14.83897918  |
| mp-1206553 | Rb <sub>2</sub> LiRuCl <sub>6</sub>               | 9.83 × 10 <sup>-11</sup> | 0           | 3.510010077  |
| mp-1206403 | Rb <sub>2</sub> LiVCl <sub>6</sub>                | 9.50 × 10 <sup>-23</sup> | 0.02154604  | 14.31397569  |
| mp-1206399 | Rb <sub>2</sub> LiVCl <sub>6</sub>                | $5.89 \times 10^{-11}$   | 0           | -0.906828953 |
| mp-1206187 | Rb <sub>2</sub> LiRhCl <sub>6</sub>               | $1.47 \times 10^{-10}$   | 0           | 5.051879921  |
| mp-1205883 | Rb <sub>2</sub> LiHoCl <sub>6</sub>               | $3.02 \times 10^{-9}$    | 0.002265448 | 12.70792524  |
| mp-1205649 | LiSc(TlCl <sub>3</sub> ) <sub>2</sub>             | 0                        | 0           | 14.72005544  |
| mp-1198972 | Li <sub>6</sub> Zr <sub>6</sub> HCl <sub>18</sub> | $7.60 \times 10^{-31}$   | 0.020682633 | 16.04785159  |
| mp-1190687 | CsLi <sub>2</sub> Cl <sub>3</sub>                 | 6.56 × 10 <sup>-22</sup> | 0.001272549 | 7.136903266  |

| mp-1189625 | Cs <sub>2</sub> LiScCl <sub>6</sub> | $4.85 \times 10^{-8}$  | 0           | 11.30032817 |  |
|------------|-------------------------------------|------------------------|-------------|-------------|--|
| mp-1188344 | CsLiCl <sub>2</sub>                 | $1.36 \times 10^{-8}$  | 0           | 7.253265462 |  |
| mp-1120734 | Cs <sub>3</sub> LiCl <sub>4</sub>   | $6.76 	imes 10^{-13}$  | 0.214779303 | 6.123746748 |  |
| mp-1114583 | Rb <sub>2</sub> LiYCl <sub>6</sub>  | 0                      | 0.00494897  | 12.22078602 |  |
| mp-1114579 | Rb <sub>2</sub> LiTaCl <sub>6</sub> | $2.24 \times 10^{-14}$ | 0.112382972 | 14.53427949 |  |
| mp-1114571 | Rb <sub>2</sub> LiNdCl <sub>6</sub> | $1.65 	imes 10^{-16}$  | 0.032174464 | 11.06247265 |  |
| mp-1114567 | Rb <sub>2</sub> LiLaCl <sub>6</sub> | $3.02 \times 10^{-9}$  | 0.042283446 | 9.016485169 |  |
| mp-1114566 | Rb <sub>2</sub> LiErCl <sub>6</sub> | $4.43 \times 10^{-23}$ | 0.000185609 | 13.06959628 |  |
| mp-1114565 | Rb <sub>2</sub> LiDyCl <sub>6</sub> | $1.06 \times 10^{-8}$  | 0.003880535 | 12.595736   |  |
| mp-1114562 | Rb <sub>2</sub> LiBiCl <sub>6</sub> | $5.54 \times 10^{-8}$  | 0           | 11.24792255 |  |
| mp-1114431 | Rb <sub>2</sub> LiTbCl <sub>6</sub> | $2.60 \times 10^{-13}$ | 0.005710754 | 12.42760706 |  |
| mp-1114429 | Rb <sub>2</sub> LiScCl <sub>6</sub> | $1.48 \times 10^{-9}$  | 0           | 13.92881696 |  |
| mp-1114428 | Rb <sub>2</sub> LiSbCl <sub>6</sub> | $8.99 \times 10^{-24}$ | 0           | 11.77810497 |  |
| mp-1114423 | Rb <sub>2</sub> LiMoCl <sub>6</sub> | $2.08 \times 10^{-21}$ | 0           | 13.60593862 |  |
| mp-1114421 | Rb <sub>2</sub> LiLuCl <sub>6</sub> | $2.93 	imes 10^{-16}$  | 0           | 16.93907393 |  |
| mp-1114417 | Rb <sub>2</sub> LiCeCl <sub>6</sub> | 0                      | 0.084097757 | 9.833513203 |  |
| mp-1114414 | Rb <sub>2</sub> LiAuCl <sub>6</sub> | 0                      | 0.124259526 | 7.598634616 |  |
| mp-1114176 | K2LiTaCl6                           | $9.53 \times 10^{-8}$  | 0.144685504 | 13.74853025 |  |
| mp-1113945 | Na <sub>2</sub> LiAuCl <sub>6</sub> | $4.21 \times 10^{-14}$ | 0.233189439 | 3.954990039 |  |
| mp-1113921 | Na <sub>2</sub> LiErCl <sub>6</sub> | $8.49 	imes 10^{-29}$  | 0.118538205 | 12.25557094 |  |
| mp-1113912 | Na <sub>2</sub> LiInCl <sub>6</sub> | $2.52 \times 10^{-12}$ | 0.131522275 | 11.56953232 |  |
| mp-1113903 | Na <sub>2</sub> LiScCl <sub>6</sub> | 0                      | 0.103259453 | 13.46057812 |  |
| mp-1113898 | Na <sub>2</sub> LiTlCl <sub>6</sub> | $2.21 \times 10^{-15}$ | 0.137094961 | 11.27047756 |  |
| mp-1113840 | Na <sub>2</sub> LiLaCl <sub>6</sub> | $2.32 \times 10^{-9}$  | 0.176806233 | 9.645898997 |  |
| mp-1113839 | Na <sub>2</sub> LiDyCl <sub>6</sub> | $5.75	imes10^{-18}$    | 0.11895373  | 11.77114339 |  |
| mp-1113837 | Na <sub>2</sub> LiBiCl <sub>6</sub> | $7.14 	imes 10^{-33}$  | 0.121728747 | 10.16847696 |  |
| mp-1113742 | Na <sub>2</sub> LiYCl <sub>6</sub>  | 0                      | 0.125927748 | 12.22403797 |  |
| mp-1113318 | $Na_2LiTbCl_6$                      | $2.24 	imes 10^{-10}$  | 0.122539436 | 11.92362953 |  |
| mp-1113317 | Na <sub>2</sub> LiSbCl <sub>6</sub> | $2.26 \times 10^{-7}$  | 0.145280272 | 9.91495411  |  |
| mp-1113316 | Na <sub>2</sub> LiLuCl <sub>6</sub> | $1.05 \times 10^{-15}$ | 0.112977848 | 13.13890121 |  |
| mp-1113026 | Cs <sub>2</sub> LiAuCl <sub>6</sub> | 0                      | 0.126226952 | 9.229461978 |  |
| mp-1113018 | Cs <sub>2</sub> LiDyCl <sub>6</sub> | $1.90 \times 10^{-9}$  | 0           | 12.5318003  |  |
| mp-1113012 | Cs <sub>2</sub> LiMoCl <sub>6</sub> | $1.76 	imes 10^{-10}$  | 0.031926    | 12.64319487 |  |
| mp-1113004 | Cs <sub>2</sub> LiScCl <sub>6</sub> | 0                      | 0.011216129 | 13.45870136 |  |

| mp-1112999 | Cs <sub>2</sub> LiTlCl <sub>6</sub> | 9.73 × 10 <sup>-11</sup> | 0.017419603 | 12.60102971 |  |
|------------|-------------------------------------|--------------------------|-------------|-------------|--|
| mp-1112669 | Cs <sub>2</sub> LiTbCl <sub>6</sub> | $3.25 \times 10^{-11}$   | 0           | 12.4310478  |  |
| mp-1112613 | Cs <sub>2</sub> LiErCl <sub>6</sub> | $6.71 \times 10^{-6}$    | 0           | 12.78116225 |  |
| mp-1111932 | K <sub>2</sub> LiScCl <sub>6</sub>  | $4.51 \times 10^{-14}$   | 0           | 13.99036943 |  |
| mp-1111678 | K2LiAuCl6                           | 0                        | 0.140470215 | 6.06137832  |  |
| mp-1111675 | K <sub>2</sub> LiCeCl <sub>6</sub>  | $2.49 	imes 10^{-6}$     | 0.056584505 | 56.37672967 |  |
| mp-1111672 | K2LiInCl6                           | $1.42 \times 10^{-12}$   | 0.02724929  | 12.00041516 |  |
| mp-1111666 | K2LiMoCl6                           | $3.86 \times 10^{-11}$   | 0.037788106 | 13.48223181 |  |
| mp-1111664 | K <sub>2</sub> LiSbCl <sub>6</sub>  | $1.02 \times 10^{-19}$   | 0.039358543 | 11.00633077 |  |
| mp-1111660 | K <sub>2</sub> LiTlCl <sub>6</sub>  | $2.01 \times 10^{-18}$   | 0.036989102 | 12.27761852 |  |
| mp-1111654 | K <sub>2</sub> LiYCl <sub>6</sub>   | $2.89 \times 10^{-5}$    | 0.026140421 | 11.7428968  |  |
| mp-1111288 | Li <sub>3</sub> InCl <sub>6</sub>   | $1.86 \times 10^{-9}$    | 0.266298984 | 11.24132776 |  |
| mp-1111284 | Li <sub>3</sub> ScCl <sub>6</sub>   | 0                        | 0.244241486 | 13.03989689 |  |
| mp-1111273 | K2LiEuCl6                           | $2.68 \times 10^{-25}$   | 0.042051628 | 4.393139049 |  |
| mp-1111262 | Li <sub>2</sub> ScCuCl <sub>6</sub> | $1.20 	imes 10^{-14}$    | 0.273103071 | 10.03021651 |  |
| mp-1111261 | K <sub>2</sub> LiBiCl <sub>6</sub>  | 0                        | 0           | 6.57466444  |  |
| mp-1111259 | K <sub>2</sub> LiDyCl <sub>6</sub>  | $1.75 \times 10^{-9}$    | 0.025984887 | 12.1829594  |  |
| mp-1111257 | K2LiLaCl6                           | $2.36 \times 10^{-21}$   | 0.071879093 | 10.23133184 |  |
| mp-1111256 | K <sub>2</sub> LiErCl <sub>6</sub>  | $1.97 \times 10^{-18}$   | 0.020649807 | 12.82853398 |  |
| mp-1111149 | Li <sub>3</sub> SbCl <sub>6</sub>   | $1.34 \times 10^{-10}$   | 0.293585337 | 10.37733826 |  |
| mp-1111130 | K <sub>2</sub> LiTbCl <sub>6</sub>  | $1.82 \times 10^{-7}$    | 0.032657765 | 11.8677904  |  |
| mp-1111126 | K2LiLuCl6                           | $3.26 \times 10^{-11}$   | 0           | 12.40319891 |  |
| mp-1111123 | Li <sub>2</sub> InCuCl <sub>6</sub> | $1.08 	imes 10^{-8}$     | 0.259715712 | 9.716304577 |  |
| mp-1111120 | Li <sub>2</sub> CuSbCl <sub>6</sub> | $3.09 \times 10^{-11}$   | 0.288497732 | 9.226022992 |  |

**Table S2.** Conductivity diffusion coefficients obtained from AC impedance measurements for six chlorides (Li<sub>2</sub>CoCl<sub>4</sub>, Li<sub>2</sub>CrCl<sub>4</sub>, Li<sub>10</sub>Mg<sub>7</sub>Cl<sub>24</sub>, Li<sub>4</sub>Mn<sub>3</sub>Cl<sub>10</sub>, Li<sub>2</sub>FeCl<sub>4</sub>, and LiAlCl<sub>4</sub>).

| Chemical formula                                 | $D_{ m Li,RT}[ m cm^2s^{-1}]$ |
|--------------------------------------------------|-------------------------------|
| $Li_{10}Mg_7Cl_{24}$                             | $4.8 \times 10^{-11}$         |
| LiAlCl <sub>4</sub>                              | $2.8 	imes 10^{-10}$          |
| Li <sub>2</sub> CrCl <sub>4</sub>                | $2.3 \times 10^{-12}$         |
| Li <sub>4</sub> Mn <sub>3</sub> Cl <sub>10</sub> | $2.6 	imes 10^{-10}$          |
| Li <sub>2</sub> FeCl <sub>4</sub>                | $2.8 	imes 10^{-10}$          |
| Li <sub>2</sub> CoCl <sub>4</sub>                | $3.8 \times 10^{-11}$         |

**Table S3.** Resistance decomposition results for the chlorides  $Li_2CoCl_4$ ,  $Li_2CrCl_4$ ,  $Li_{10}Mg_7Cl_{24}$ ,  $Li_4Mn_3Cl_{10}$ ,  $Li_2FeCl_4$ , and  $LiAlCl_4$ . DE-*R*, DT-*T*, and DE-*C* indicate the resistance, relaxation time, and capacitance, respectively, obtained from DRT analysis. *d*,  $C_{cb}$ , and *Q* indicate the crystallite size calculated using the Halder–Wagner method, capacitance of the crystallite grain boundary estimated using the Brickwork model, and resistance ratio of the particle grain boundary.

| Compound                                          | DE1- <i>R</i> / Ω   | DE1-T/s                | DE1-C / F            | DE2- <i>R</i> / Ω   | DE2- <i>T</i> / s    | DE2-C / F            | <i>d</i> / Å | $C_{ m cb}$ / F       | Q / % |
|---------------------------------------------------|---------------------|------------------------|----------------------|---------------------|----------------------|----------------------|--------------|-----------------------|-------|
| Li <sub>2</sub> CoCl <sub>4</sub>                 | $2.6 \times 10^{4}$ | $3.6 	imes 10^{-6}$    | $1.4 	imes 10^{-10}$ | $4.2 \times 10^{3}$ | $3.6 	imes 10^{-4}$  | $8.5 	imes 10^{-8}$  | 111          | $1.1 	imes 10^{-10}$  | 13    |
| Li <sub>2</sub> CrCl <sub>4</sub>                 | $2.2 \times 10^5$   | 2.9 × 10 <sup>-5</sup> | $1.3 	imes 10^{-10}$ | $9.7 \times 10^{3}$ | $4.0 	imes 10^{-3}$  | $4.1 	imes 10^{-7}$  | 290          | $2.9 	imes 10^{-10}$  | 4     |
| Li <sub>10</sub> Mg <sub>7</sub> Cl <sub>24</sub> | $6.9 	imes 10^4$    | $8.8 	imes 10^{-6}$    | $1.3 	imes 10^{-10}$ | $6.8 \times 10^{3}$ | $1.8 \times 10^{-3}$ | $2.6 	imes 10^{-7}$  | 115          | $1.2 \times 10^{-10}$ | 9     |
| Li <sub>4</sub> Mn <sub>3</sub> Cl <sub>10</sub>  | $3.2 \times 10^{3}$ | $9.6 	imes 10^{-7}$    | $3.0 	imes 10^{-10}$ | $1.9 \times 10^2$   | $5.8 	imes 10^{-5}$  | $3.1 \times 10^{-7}$ | 152          | $1.5 	imes 10^{-10}$  | 4     |

**Table S4.** Resistance decomposition results for the sulfide  $Li_3PS_4$  and oxides  $Li_2SO_4$ ,  $Li_2CO_3$ , and  $Li_3BO_3$ . DE-*R*, DT-*T*, and DE-*C* indicate the resistance, relaxation time, and capacitance, respectively, obtained from DRT analysis. *d*,  $C_{cb}$ , and *Q* indicate the crystallite size calculated using the Halder–Wagner method, capacitance of the crystallite grain boundary estimated using the Brickwork model, and resistance ratio of the particle grain boundary.

| Compound                        | DE1- <i>R</i> / Ω     | DE1- <i>T</i> / s    | DE1-C / F               | DE2- <i>R</i> / Ω     | DE2- <i>T</i> / s     | DE2-C / F            | <i>d</i> / Å | $C_{ m cb}$ / F       | Q / % |
|---------------------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|--------------|-----------------------|-------|
| Li <sub>3</sub> PS <sub>4</sub> | 2.6 × 10 <sup>2</sup> | $2.4 \times 10^{-8}$ | 9.2 × 10 <sup>-11</sup> | 27                    | 5.7 ×10 <sup>-7</sup> | $2.1 	imes 10^{-8}$  | 98           | $9.8 	imes 10^{-11}$  | 9     |
| Li <sub>2</sub> SO <sub>4</sub> | $8.4 	imes 10^5$      | $1.3	imes10^{-3}$    | $1.6 	imes 10^{-9}$     | $2.8 	imes 10^6$      | $9.7	imes10^{-2}$     | $3.6 	imes 10^{-8}$  | 320          | $3.2 \times 10^{-10}$ | 77    |
| Li <sub>2</sub> CO <sub>3</sub> | $1.3 	imes 10^4$      | $2.5 \times 10^{-6}$ | $2.0 \times 10^{-10}$   | 7.2 × 10 <sup>5</sup> | $2.2 \times 10^{-2}$  | $3.1 \times 10^{-8}$ | 355          | $3.6 	imes 10^{-10}$  | 97    |
| Li <sub>3</sub> BO <sub>3</sub> | $2.6 	imes 10^4$      | $1.0 	imes 10^{-5}$  | $3.9 	imes 10^{-10}$    | $4.2 \times 10^{6}$   | $2.4 	imes 10^{-2}$   | $5.7	imes10^{-9}$    | 325          | $3.3 	imes 10^{-10}$  | 99    |

## References

- N. Tanibata, S. Takimoto, K. Nakano, H. Takeda, M. Nakayama and H. Sumi, *ACS Mater Lett*, 2020, 2, 880–886.
- 2 S. Aizu, S. Takimoto, N. Tanibata, H. Takeda, M. Nakayama and R. Kobayashi, *Journal of the American Ceramic Society*, 2023, **106**, 3035–3044.
- 3 N. Tanibata, M. Kato, S. Takimoto, H. Takeda, M. Nakayama and H. Sumi, *Advanced Energy and Sustainability Research*, 2020, **1**, 2000025.
- 4 H. Xia, L. Lu and G. Ceder, *J Power Sources*, 2006, **159**, 1422–1427.
- 5 K. Tang, X. Yu, J. Sun, H. Li and X. Huang, *Electrochim Acta*, 2011, 56, 4869–4875.
- 6 N. Kuwata, M. Nakane, T. Miyazaki, K. Mitsuishi and J. Kawamura, *Solid State Ion*, 2018, **320**, 266–271.
- 7 F. N. Sayed, M. B. Sreedhara, A. Soni, U. Bhat, R. Datta, A. J. Bhattacharyya and C. N. R. Rao, *Mater Res Express*, DOI:10.1088/2053-1591/ab3e19.
- 8 N. Imanishi, K. Kanamura and Z. I. Takehara, *J Electrochem Soc*, 1992, **139**, 2082–2087.
- 9 R. Kobayashi, J Open Source Softw, 2021, 6, 2768.