Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Fig. S1. Monochromatic PXRD data for as-synthesised (a) $Mg_xNi_{1-x}O$, (b) $Mg_xMn_{1-x}O$, and (c) $Mg_xCo_{1-x}O$ samples via solid-state method.

Fig. S2. Fitted XRD data for DRS Mg₂MnO₃ (before ball-milling) refined with Fm-3m space group.

Atom	Wyckoff Positions	х	у	z	Occupancy	U _{iso}	
Mg	а	0	0	0	0.66	0.00977(4)	
Mn	а	0	0	0	0.34	0.01267(4)	
0	b	0.5	0.5	0.5	1	0.01479(3)	
a=4.3054(3) Å, Space Group: Fm-3m, Domain size (μm)=1.0001, Microstrain=1081.2							
RF=1.057%, reduced χ**2=1.24							

Table S1. Table of XRD Rietveld refinement parameters for Mg₂MnO₃ (before ball-milling).

Fig. S3. Fitted XRD data for DRS Mg₂CoO₃ refined with Fm-3m space group.

Atom	Wyckoff Positions	x	у	z	Occupancy	U _{iso}		
Mg	а	0	0	0	0.66	0.00122(1)		
Со	а	0	0	0	0.34	0.00478(4)		
0	b	0.5	0.5	0.5	1	0.00229(1)		
a=4.2273(4) Å, Space Group: Fm-3m								
RF=24.231%, red	RF=24.231%, reduced χ**2=0.86							

Table S2. Table of XRD Rietveld refinement parameters for Mg₂CoO₃. It should be noted that the PXRD data for Co-containing compounds is noisy due to the high background fluorescence from Co.

Fig. S4. Fitted XRD data for DRS Mg₂NiO₃ refined with Fm-3m space group.

Atom	Wyckoff Positions	х	У	z	Occupancy	U _{iso}		
Mg	а	0	0	0	0.66	0.02085(6)		
Ni	а	0	0	0	0.34	0.00070(6)		
0	b	0.5	0.5	0.5	1	0.00551(1)		
a=4.2041(7) Å, Space Group: Fm-3m								
RF=4.310%, r	RF=4.310%, reduced χ**2=1.00							

Table S3. Table of XRD Rietveld refinement parameters for Mg_2NiO_3 .

Atom	Wycoff	х	У	z	Occupancy
Mg	а	0	0	0	0.66
Mn	а	0	0	0	0.34
0	b	0.5	0.5	0.5	1
S.G.=F	m3m,	a=4.3	313 Å	α=90	
R _w =0	.207,				
Q _{max} =	24 Å,				
r=1-4	10 Å,				

Table S4. X-ray PDF refinement parameters for Mg₂MnO₃ (without ball-milling).

Atom	Wycoff	x	У	z	Occupancy
Mg	а	0	0	0	0.66
Со	а	0	0	0	0.34
0	b	0.5	0.5	0.5	1
S.G.=F	⁻ m3m,	a=4.2	230 Å	α=90	
R _w =0	.180,				
Q _{max} =	24 Å,				
r=1-4	40 Å,				

Table S5. X-ray PDF refinement parameters for Mg₂CoO₃.

Atom	Wycoff	x	У	z	Occupancy
Mg	а	0	0	0	0.66
Ni	а	0	0	0	0.34
0	b	0.5	0.5	0.5	1
S.G.=F	m3m,	a=4.3	196 Å	α=90	
R _w =0	.191,				
Q _{max} =	24 Å,				
r=1-4	10 Å,				

Table S6. X-ray PDF refinement parameters for Mg₂NiO₃.

Fig. S5. (a). Galvanostatic discharge/charge profile of a $Mo_6S_8||Mg$ cell at 60°C using the 0.3 M $Mg[B(hfip)_4]_2$ in DME electrolyte, which shows comparable capacity to reported results.^{26,32} (b) Cyclic voltammograms using Al as the working electrode and Mg as the reference at a scan rate of 25 mV s⁻¹, and the profile reveals the 0.3 M Mg[B(hfip)_4]_2/DME electrolyte is stable to at least 3.5 V vs. Mg in standard coin cells.

Fig. S6. Fitted XRD data for Mg₂MnO₃ after ball-milling at 200 rpm refined with Fm-3m space group.

Atom	Wyckoff Positions	x	у	z	Occupancy	U _{iso}		
Mg	а	0	0	0	0.66	0.04190(2)		
Mn	а	0	0	0	0.34	0.01434(3)		
0	b	0.5	0.5	0.5	1	0.0002(0)		
a=4.1970(8), Space Group:	a=4.1970(8), Space Group: Fm-3m, Domain size (μm)=0.0389, Microstrain=2110.3							
RF=1.628%, reduced χ**2=1.58								

Table S7. Table of XRD Rietveld refinement parameters for Mg_2MnO_3 after ball-milling at 200 rpm. The domain size is noted to be much reduced compared to the sample before ball-milling, accompanied by an increased degree of strain effects.

Fig. S7. Fitted XRD data for Mg₂MnO₃ after ball-milling at 300 rpm refined with Fm-3m space group.

Atom	Wyckoff Positions	x	у	z	Occupancy	U _{iso}		
Mg	а	0	0	0	0.66	0.04397(2)		
Mn	а	0	0	0	0.34	0.00007(9)		
0	b	0.5	0.5	0.5	1	0.01789(4)		
a=4.2298(8), Space Group: Fm-3m, Domain size (μm)=0.0168, Microstrain=2531.6								
RF=1.582%, reduced	RF=1.582%, reduced χ**2=1.09							

Table S8. Table of XRD Rietveld refinement parameters for Mg_2MnO_3 after ball-milling at 300 rpm. The domain size is noted to be smaller compared to that of Mg_2MnO_3 after ball-milling at 200 rpm and the sample before ball-milling, whereas the microstrain is the highest.

Fig. S8. PXRD patterns of Mg_2MnO_3 showing the shift in (111) peak to higher scattering angle and peak broadening after ball-milling.

Fig. S9. Charge/discharge profiles of Mg_2MnO_3 after ball-milling at 300 rpm at 60°C and at a current density of 10 mA g⁻¹. The cathode was overcharged to 3.7V and held for 5 hours as an attempt to force it to de-magnesiate.