Supporting Information for

Topotactic N-doped carbon for efficient oxygen reduction reaction

Miaosen Yang^a, Tian Zhang^{a,b}, Danni Wang^b, Yingna Chang^c, and Guoxin Zhang^{b,*}

a. School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China.

b. College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China. Email: zhanggx@sdust.edu.cn

c. Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224000, China.

1. Experimental Section

2.1 Chemicals and materials: Polyvinyldichloride (PVDC, Diofan® P 530, Solvay Specialty Polymers) was purchased from Changzhou Mingshuo Chemical Co., Ltd. Other reagents, carbon nanotube (CNT, purity>99%, used without treatment) was purchased from Shenzhen Suiheng Technology Co., Ltd. Sodium ethoxide (C_2H_5ONa , A.R. grade), N-Methyl pyrrolidone (NMP, A.R. grade), pyridine (A.R. grade), pyrrole (A.R. grade), melamine (A.R. grade) were all purchased from Shanghai Macklin Bio-chemical Co., Ltd.

2.2 Material characterizations

X-ray diffraction (XRD) patterns were recorded by a Shimadzu XRD-6000 (CuK α radiation, λ = 1.5406 Å, 40 kV) in the 2 θ range of 5-80°. Raman spectroscopy was obtained from LabRAM ARAMIS Raman spectrometer (HORIBA Jobin Yvon). Scanning electron microscopy (SEM) images were measured on an Apreo S Hivac scanning electron microscope with an accelerating voltage of 20 kV. Transmission electron microscopy (TEM) and high-angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM) images were obtained on an FEI Talos 200S high-resolution transmission electron microscope at an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) data were obtained with a Thermo ESCALAB 250Xi spectrometer. The specific surface area and pore structures of the N-doped carbons were studied by the N₂ adsorption-desorption isotherm (Micromeritics ASAP 2460) using a Micromeritics ASAP 2460 instrument at 77 K.

2.3 Electrochemical measurements of the oxygen reduction reaction

The ORR catalytic activity of the N-doped carbon samples is evaluated in a three-electrode setup connecting to an electrochemical workstation (CHI-760E), a Pt wire and a saturated calomel electrode (SCE) are used as the counter and reference electrodes, respectively, and a glass carbon electrode loaded with catalyst ink is used as the working electrode. The catalyst ink is prepared as follows: 5.0 mg of catalyst and 1.0 mg of conductive carbon black are homogeneously dispersed in 30 μ L of Nafion (0.5 wt %) and 970 μ L of ethanol solution to form a uniform slurry. Before the ORR test, O₂ (99.999%) is purged into 0.1 M KOH electrolyte for at least 30 min to reach O₂ saturation. Commercial Pt/C (20 wt%) was used as a standard catalyst for ORR testing. According to the Nernst equation, all potentials are converted to reversible hydrogen electrode (RHE):

$$E_{RHE} = E_{SCE} + 0.059 \, V \times pH + 0.241 \, V \tag{1}$$

where E_{RHE} is the potential relative to RHE, and E_{SCE} is the measured potential relative to the SCE reference electrode. To investigate the ORR kinetics, the linear sweep voltammetry (LSV) curves are measured in O₂-saturated 0.1 M KOH with a scan rate of 5 mV s⁻¹ at different speeds ranging from 400 to 2025 rpm. Koutecky-Levich (K-L) plots are used to calculate the electron transfer number (*n*):

$$\frac{1}{J} = \frac{1}{J_K} + \frac{1}{J_L} = \frac{1}{J_K} + \frac{1}{B\omega^{1/2}}$$
(2)

$$B = 0.62nFC_0 D_0^{2/3} v^{-1/6}$$
(3)

where the J, J_L , and J_K are the experimental measured current density, the diffusion-limiting current density, and the kinetic current density. Here, ω represents the rotating speed (in rpm), *n* is the number of transferred electrons for ORR, F is the Faraday constant, C_0 is the bulk concentration $(1.2 \times 10^{-3} \text{ mol } L^{-1})$, D_0 is the diffusion coefficient of O_2 ($1.9 \times 10^{-5} \text{ cm}^{-2} \text{ s}^{-1}$), and *v* is the kinetic viscosity ($0.01 \text{ cm}^{-2} \text{ s}^{-1}$). The Tafel curves are obtained through the LSV polarization curves according to the following equation:

$$\eta = a + b\log|j| \tag{4}$$

2. Supplementary Figures

Figure S1. (A) SEM image, (B) TEM image, (C) oxygen element mapping image of N_{pyri}-C.

Figure S2. (A) SEM image, (B) TEM image, (C) HRTEM image, (D) HAADF-STEM image, (E) carbon, (F) nitrogen, and (G) oxygen element mapping images of N_{pyrr} -C.

200 nm

Figure S3. (A) SEM image, (B) TEM image, (C) HRTEM image, (D) HAADF-STEM image, (E) carbon, (F) nitrogen, and (G) oxygen element mapping images of N_{NMP} -C.

200 nm

Figure S4. XPS survey spectra of N_{pyri} -C, N_{pyrr} -C, and N_{NMP} -C samples.

Figure S5. XPS C 1s spectra and the deconvoluted curves of N_{pyri} -C, N_{pyrr} -C, and N_{NMP} -C samples.

Figure S6. XPS O 1s spectra and the deconvoluted curves of N_{pyri} -C, N_{pyrr} -C, and N_{NMP} -C samples.

Figure S7. The actual atomic percentages of different types of N species in N-C/CNT composites based on XPS elemental analysis.

Figure S8. Plots of CV peak current density versus scan rate for N_{pyri}-C, N_{pyrr}-C, and N_{NMP}-C.

Figure S9. Comparisons of onset potential and half-wave potentials of N_{pyri} -C, N_{pyrr} -C, and N_{NMP} -C using 1600-rpm LSV polarization curves.

	Electrolyte	E _{oneset} (V)	E _{1/2} (V)	Tafel (mV dec ⁻¹)	Durability (i-t method, retention@time duration)	Reference
N _{Pyri-C}		0.99	0.88	110.3	/	
N _{Pyrr-C}	0.1 M KOH	0.87	0.77	101.7	98%@6h	This work
N _{NMP-C}		0.91	0.86	89.4	/	
NC-6	0.1 M KOH	0.87	0.81	/	94%@4h	Nano-Micro Lett. (2018) 10: 29
NPCS- 900	0.1 M KOH	0.99	0.87	/	16 mV E _{1/2} loss after 5000 cycles	J. Mater. Chem. A, 2021, 9: 5751
NDC1000	0.1 М КОН	0.96	0.86	/	/	Angew. Chem. 2020, 132(29): 12097
NPCNF- O	0.1 M KOH	0.98	0.85	66	90%@6.9h	ACS Catal. 2022, 12(7): 4002
N-CNSP	0.1 М КОН	0.96	0.85	58	95%@16.7h	Energy Storage Mater 2020, 27: 514
NCF	0.1 M KOH	1.00	0.86	57	88.9%@24h	Adv. Funct. Mater. 2021, 31, 2103187

Table S1. Performance comparison of our N-doped carbon with other metal-free doped carbons reported.