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Characterizations 

Surface and cross-section morphologies of the CSMR are observed using a field 

emission scanning electron microscope (SEM, Hitachi Regulus 8100 and ZEISS Sigma 

300). The structural components are characterized by Powder X-ray diffractometer 

(PXRD, Rigaku Smart Lab 9 kW diffractometer with Cu Kα radiation (λ = 1.541 Å)). 

FTIR spectra (Nicolet iS10) in a range of 4000-400 cm-1. Thermal gravimetric (TG, 

Mettler Toledo TGA/DSC 3+ STARe) system with air atmosphere to determine the 

content of each component. The pore channel and specific surface area were analyzed 

using Nitrogen adsorption-desorption experiment (Quantachrome, Autosorb iQ2 

analyzer, liquid N2 temperature 77K). All electrochemical measurements were 

accomplished with a standard three-electrode system on an electrochemical workstation 

(PARSTAT MC 500, America). X-ray photoelectron spectra (XPS, Thermo Fisher 

Scientific ESCALAB 25OXi) analyze the valence states of the elements. The 

hydrophilicity of CSMR is observed using the contact angle (DSA100, KRUSS, 

Germany). UV-visible spectra (Varian Cary 60, Agilent Technologies Inc, America) 

are used for concentration detection before and after the catalytic reaction. The Pd 

content of the samples was measured by inductively coupled plasma-optical emission 

spectroscopy (Agilent, ICP-OES-5100). In-situ diffused reflectance infrared Fourier 

transform spectroscopy (in-situ DRIFTs) was undertaken by Nicolet iS10, Thermo 

Fisher Scientific (U.S.A). The resolution of the iS10 was chosen to be 4 cm-1, and the 

recording range was from 400 to 4000 cm-1. 

DFT simulation  

The density functional theory (DFT) calculations is carried out to further comprehend 

the interactions of various compounds.The simulation process (structure construction, 

optimization and calculations) is utilizing the Vienna ab initio simulation package 

(VASP) based on the first-principles[10]. The energy of exchange-correlation is 

calculated with Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation 

(GGA)[11-13].The plane-wave basis cut-off energy is obtained at 450 eV. The Gamma k-

point grid is performed with 2×2×1[14]. The self-consistent filed tolerance energy is 
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applied as 10-5 eV. The maxim force tolerance for each atom is below 0.02 eV / Å. The 

maximum displacement tolerance is derived at 0.005 Å. The interaction between the 

different materials in contemporary research is established toward the equation of: Eint 

=Etoal-∑Econstituent (where Etoal and Econstituent means the structure optimization 

energy of the total research system and each constituent in the studying system, 

correspondingly). A negative Eint value indicates that interactions between components 

can occur spontaneously. Furthermore, higher negative Eint represents higher 

interactions occurring within the system. 
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Figure S1. The overall structure SEM images of a) 0.7-ZIF-8@CC-DCA, b) 1-ZIF-8@CC-

DCA and c) 2-ZIF-8@CC-DCA, respectively. 

 

 

 

 

 

 

Figure S2. The SEM image of 3-ZIF-8@CC-DCA. 
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Figure S3. The 2D AFM images of CSMRs of a)pristine carbon cloth, b)0.7-ZIF-8@CC-

DCA, c)1-ZIF-8@CC-DCA and d) 2-ZIF-8@CC-DCA, respectively. 
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Figure S4. The XRD pattern of 3-ZIF-8@CC-DCA. 

 

 

 

Figure S5. Specific surface and pore size distribution, (b) the aperture distribution NLDFT 

diagram of 0.7-Pd/ZIF-8@CC-DCA, 1-Pd/ZIF-8@CC-DCA and 2-Pd/ZIF-8@CC-DCA. 
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Figure S6. The XPS C 1s core-level spectrum of ZIF-8@CC, Pd/ZIF-8@CC and Pd/ZIF-

8@CC-DCA. 

 

 

 
Figure S7. The XPS N 1s core-level spectrum of ZIF-8@CC, Pd/ZIF-8@CC and Pd/ZIF-

8@CC-DCA. 
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Figure S8. The XPS Zn 2p core-level spectrum of ZIF-8@CC, Pd/ZIF-8@CC and Pd/ZIF-

8@CC-DCA. 

 

 

 

Figure S9. The XPS O 1s core-level spectrum of ZIF-8@CC, Pd/ZIF-8@CC and Pd/ZIF-

8@CC-DCA. 
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Figure S10. Strong hydrophobicity of the Pd/ZIF-8@CC-DCA in the air. 

 

 

 

 

 

 

Figure S11. Self-cleaning behavior of the Pd/ZIF-8@CC-DCA. The SiO2 particles were 

completely removed with water droplets rolling off the surface. 
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Figure S12. The oil/water separation test of MB and dichloromethane. 

 

 

 

 

 

Figure S13. SEM images of Pd/ZIF-8@CC-DCA before (a) and after (b) acid treatment 

(pH=1). 
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Figure S14. Photographs of the dynamic shape changes of the water droplets with pH values 

of (a) 1 and (b) 3 on the Pd/ZIF-8@CC. 

 

 

 

 

 

 
Figure S15. Photographs of the dynamic shape changes of the water droplets with pH values 

of (a) 1 and (b) 3 on the Pd/ZIF-8@CC-DCA. 
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Figure S16. Photographs of the experimental setup for pH monitoring during water electrolysis. 

 

 

 

 

 

 
Figure S17. The catalytic reaction of MB aqueous solution with 0.1 M Na2SO4 was realized 

by applying voltage switch to change the wettability of Pd/ZIF-8@CC-DCA membrane. 
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Figure S18. Change of the response time as a function of the applied voltage. 

 

 

 

 

 

Figure S19. SEM images of Pd/ZIF-8@CC-DCA after (a) acid treatment and (b) electro-

treatment. 
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Figure S20. XRD patterns of Pd/ZIF-8@CC-DCA and after HCl treated and after electro-

response. 

 

 

Figure S21. The XPS Pd 3d core-level spectrum of Pd/ZIF-8@CC-DCA after electro-response. 
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Table S1. ICP test results of Pd content in CSMR 

Sample 
Theoretical Pd 

content (wt%) 

Actual Pd 

content (wt%) 

Pd content after 

recycling (wt%) 

2-Pd/ZIF-8@CC-DCA 3.0 2.861 2.853 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S22. Separation and catalytic process of the n-hexane/MB solution mixture at 20 V. 

After applying the voltage of 15 V for 10 s, the rejected MB solution passed through the ZIF-

8@CC-DCA and there was no fading, the n-hexane was remained. 
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Figure S23. The change of MB degradation efficiency before and after adding hydroxyl radical 

scavenger ethanol (adding scavenger after 5 minutes of sampling). 
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Figure S24. The electrocatalytic degradation efficiency and flux of OG, RhB and 4-NP. 
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Figure S25. DFT calculations of energy density for dodecylamine molecules a) before and b) 

after protonation. 
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Table S2. Comparison between membrane reactor and other wettability responsive 

functional membrane 

Membrane type 
Switching 

condition 

Control method Response time Ref. 

PVDF/P(AN-co-

AM)/P4VP 
PH>7 Treat with acidic water 30 s S1 

PVDF-gPAA pH>6.5 Treat with acidic water 15 s S2 

PVDF-gSiO
2
 

NPs/PAMAM 

pH>12 
Treat with alkaline water 

30 s S3 

PP-SiO
2
-(PDMAEMA-b-

PMMA) 

pH<2 Treat with acidic water 20 s S4 

PPy-AOT electrolyte 
Regulating electrode 

redox potentials 

300 s S5 

CAAS-ODA pH<2 
Treated with hydrochloric 

acid 
30 s S6 

E-pH Membrane 
Electro responsive 

15 V 30 s S7 

PMMA-co-PDEAEMA CO
2
 responsive CO

2
 and N

2
 60 min S8 

PNIPAAm/CNT@PVDF Photo responsive Infrared light 40 s S9 

Pd/ZIF-8@CC-DCA 
Electro responsive 

20 V 10 s This work 
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